Remote Sensing (NDVI) and Apparent Soil Electrical Conductivity (ECap) to Delineate Different Zones in a Vineyard

Abstract

Presented at the 1st International Electronic Conference on Agronomy, 3–17 May 2021The intensification of agriculture has greatly enhanced crop productivity, but also its potential environmental impact. Nutrient recycling and an increase in resource use efficiency are the key points to keep production at high levels with minimum impact. The present work’s goal was to provide new insight on the spatial variability of soil chemical properties in a vineyard. For this, three different zones were identified in a 6.77 ha parcel, according to the remote sensing of apparent soil electrical conductivity (ECap) and the normalized difference vegetation index (NDVI). Soil samples from specific locations were then collected and chemically described, and the resulting data were statistically analyzed. ECap and NDVI appeared to be efficient tools to define different zones within the vineyard, with most of the soil chemical properties varying at the highest significance level (p < 0.001) according to the F test, except for extractable phosphorus (Égner-Rhiem) and organic carbon (TOC method). Overall, our results revealed potential for the implementation of site-specific soil fertilization and soil quality managementinfo:eu-repo/semantics/publishedVersio

    Similar works