High speed videography of gap bridging with beam oscillation and wire feeding during the laser welding of stainless steel and aluminum alloys

Abstract

Laser beam welding is known for its quality and speed. Given its susceptibility to gaps, the technology is applied in the industrial field with hard automation and dedicated fixtures rather than small-batch production. The latter cannot always guarantee the strict conditions on the fit-up of joints, especially with complex geometries. Gap-bridging techniques may be exploited to overcome these inaccuracies. The present work investigates the simultaneous use of low frequency circular beam oscillation and wire feeding as means to produce a continuous weld seam in the presence of constant air gaps. Lap joint welding of 2 mm-thick AISI301LN and butt joint welding of 3 mm-thick AW6005A-T6 alloy were conducted with gaps up to 1mm. High-speed imaging at 10kHz provided an insight in the dynamics of the oscillating weld pool and spatter formation. Optical inspection and metallographic analyses were used to verify the gap-bridging capability as well as the resulting seam quality

    Similar works