Refractory TaTiNb, TaTiNbZr, and TaTiNbZrX (X = Mo, W) high entropy alloys by combined use of high energy ball milling and spark plasma sintering: Structural characterization, mechanical properties, electrical resistivity, and thermal conductivity

Abstract

Refractory TaTiNb, TaTiNbZr, and TaTiNbZrX (X = Mo, W) high entropy alloys were synthesized by combined use of high energy ball milling (HEBM) and spark plasma sintering (SPS). Powders of predominantly bcc TaTiNbZrX (X = Mo, W) refractory high entropy alloys (RHEAs) were successfully prepared by short-term HEBM (60 min) and then SPS-consolidated at 1373 K for 10 mi

    Similar works