In waste processing technology, the recent Corona Electrostatic Separation (CES) method is used to separate conductive from non-conductive particles in recycling streams. This paper proposes an innovative simulation approach based on non-smooth dynamics. In this context, a differential-variational formulation is used to implement a scalable and efficient time integrator that allows the large-scale simulation of trajectories of particles with different properties under the effect of particle-particle interactions and frictional contacts. Issues related to performance optimization, fast collision detection and parallelization of the code are discussed