Numerical and experimental study on metamaterials featuring acoustical and thermal properties

Abstract

Metamaterials can be defined as materials which, for their peculiar composition or structure, exhibit characteristics that are not normally found in nature. "Multifunctional" metamaterials could be used to optimise different characteristics at the same time. In this paper the authors try to apply them for thermal and acoustic optimization of external building walls. Thermal optimization consists in obtaining a low transmittance, important in winter, and a low periodic thermal transmittance, important in summer. Acoustic optimization consists in obtaining high sound transmission loss, to respect the law prescriptions, and a good sound absorption coefficient, if possible. In this way should be possible enhance the comfort conditions in buildings and reduce the energy demand for winter heating and summer cooling. The proposed solution consists of several layers with different suitable characteristics: the sequence of the layers has been chosen with particular care. The thermal analysis has been performed by means of a self-developed code based on the ISO 13786 standard. The acoustic behaviour of the single layers has been determined following the procedure given by the ASTM E2611-09 standard using a four-microphone impedance tube and the transfer matrix method has been used for the complete assembly. This preliminary combined study showed encouraging results

    Similar works