GPU Accelerated Multi-agent Path Planning Based on Grid Space Decomposition

Abstract

In this work, we describe a simple and powerful method to implement real-time multi-agent path-finding on Graphics Processor Units (GPUs). The technique aims to find potential paths for many thousands of agents, using the A* algorithm and an input grid map partitioned into blocks. We propose an implementation for the GPU that uses a search space decomposition approach to break down the forward search A* algorithm into parallel independently forward sub-searches. We show that this approach fits well with the programming model of GPUs, enabling planning for many thousands of agents in parallel in real-time applications such as computer games and robotics. The paper describes this implementation using the Compute Unified Device Architecture programming environment, and demonstrates its advantages in GPU performance compared to GPU implementation of Real-Time Adaptive A*

    Similar works