Flexible network management and application service adaptability in software defined wireless sensor networks

Abstract

The need for highly responsive and adaptable computing systems is essential in today’s network computing age. This is principally due to the drastic evolution in broad computing platforms operating at highly descriptive and abstracted mediums such as; reconfigurable computing systems, smart automation systems, cognitive and parallel programming systems which communicate using very complex resources or modes. Hence, such systems must incorporate the best forms of technologies to cater for the rapidly growing and heterogeneously connected platforms such as with Internet of Things (IoT). However, to effectively manage these network platforms with such high-end computing resources, requires a well-structured and carefully implemented systems. This work implements a Software Defined Wireless Sensor Network (SDWSN) approach coupled with Discrete Event Simulation (DES) and a highly extensible and scalable Software Defined Networking (SDN) controller–OpenDayLight (ODL), to implement a software-oriented network environment to increase network service adaptability and simplify network management. The implemented approach uses the ODL’s Model-Driven Service Abstraction Layer (MD-SAL) to facilitate the forwarding layer by applying state procedures to manage flow rules and introduce software-oriented network services. Experimental results indicate that in this approach, the traffic flow routing is significantly improved, with reduced transmission delays and that the underlying sensor nodes uses less energy since energy demanding tasks are performed on the controller.The National Research Foundation (NRF) of South Africa and Telkom South Africa.http://link.springer.com/journal/126522020-04-01hj2018Electrical, Electronic and Computer Engineerin

    Similar works