Electron transfer with self-assembled copper ions at Au-deposited biomimetic films : mechanistic "anomalies" disclosed by temperature- and pressure-assisted fast-scan voltammetry

Abstract

It has been suggested that electron transfer (ET) processes occurring in complex environments capable of glass transitions, specifically in biomolecules, under certain conditions may experience the medium ’ s nonlinear response and nonergodic kinetic patterns. The interiors of self-assembled organic films (SAMs) deposited on solid conducting platforms (electrodes) are known to undergo glassy dynamics as well, hence they may also exhibit the abovementioned ‘ irregularities ’ . We took advantage of Cu 2+ ions as redox-active probes trapped in the Au-deposited − COOH-terminated SAMs, either L-cysteine, or 3-mercaptopropionic acid diluted by the inert 2-mercaptoethanol, to systematically study the impact of glassy dynamics on ET using the fast-scan voltammetry technique and its temperature and high-pressure extensions. We found that respective kinetic data can be rationalized within the extended Marcus theory, taking into account the frictionally controlled (adiabatic) mechanism for short-range ET, and complications due to the medium ’ s nonlinear response and broken ergodicity. This combination shows up in essential deviations from the conventional energy gap (overpotential) dependence and in essentially nonlinear temperature (Arrhenius) and high-pressure patterns, respectively. Biomimetic aspects for these systems are also discussed in the context of recently published results for interfacial ET involving self-assembled blue copper protein (azurin) placed in contact with a glassy environment

    Similar works

    Full text

    thumbnail-image