Evaluation of Asaoka and Hyperbolic Methods for Settlement Prediction of Vacuum Preloading Combined with Prefabricated Vertical Drains in Soft Ground Treatment

Abstract

This study evaluated the use of the Asaoka and hyperbolic methods to estimate the ultimate settlement of soft ground treated by vacuum preloading combined with prefabricated vertical drains. For this aim, a large-scale physical laboratory model was constructed. The model was a reinforced-tempered glass box containing a soil mass with dimensions of 2.0 × 1.0 × 1.2 m (length × width × depth). Physical models of this scale for the same purpose are rare in the literature. The soil was taken from a typical coastal region in Dinh Vu Hai Phong, Vietnam. The surface settlement near and between the two drains was measured right after the vacuum preloading started. Important properties of the soil were tested to evaluate the effectiveness of the treatment method. The measured settlement was used in the Asaoka and hyperbolic methods to predict the potential ultimate settlement. The results showed the superiority of the vacuum consolidation approach in improving fundamental engineering properties of soft soil. Furthermore, the ultimate settlement predicted by both methods showed a good agreement with the measured value, proving that the Asaoka and hyperbolic methods are suitable for the estimation of the ultimate settlement of soft soil treated with vacuum consolidation

    Similar works