CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Local and Remote Controls on Arctic Mixed-Layer Evolution
Authors
J. Chylik
U. Egerer
+6 more
H. Griesche
A. Macke
R.A.J. Neggers
V. Schemann
P. Seifert
H. Siebert
Publication date
1 January 2020
Publisher
Malden MA: Wiley-Blackwell
Doi
Cite
Abstract
In this study Lagrangian large-eddy simulation of cloudy mixed layers in evolving warm air masses in the Arctic is constrained by in situ observations from the recent PASCAL field campaign. A key novelty is that time dependence is maintained in the large-scale forcings. An iterative procedure featuring large-eddy simulation on microgrids is explored to calibrate the case setup, inspired by and making use of the typically long memory of Arctic air masses for upstream conditions. The simulated mixed-phase clouds are part of a turbulent mixed layer that is weakly coupled to the surface and is occasionally capped by a shallow humidity layer. All eight simulated mixed layers exhibit a strong time evolution across a range of time scales, including diurnal but also synoptic fingerprints. A few cases experience rapid cloud collapse, coinciding with a rapid decrease in mixed-layer depth. To gain insight, composite budget analyses are performed. In the mixed-layer interior the heat and moisture budgets are dominated by turbulent transport, radiative cooling, and precipitation. However, near the thermal inversion the large-scale vertical advection also contributes significantly, showing a distinct difference between subsidence and upsidence conditions. A bulk mass budget analysis reveals that entrainment deepening behaves almost time-constantly, as long as clouds are present. In contrast, large-scale subsidence fluctuates much more strongly and can both counteract and boost boundary-layer deepening resulting from entrainment. Strong and sudden subsidence events following prolonged deepening periods are found to cause the cloud collapses, associated with a substantial reduction in the surface downward longwave radiative flux. ©2019. The Authors
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
Repositorium für Naturwissenschaften und Technik (TIB Hannover)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:oa.tib.eu:123456789/7274
Last time updated on 23/07/2022