pH- and Temperature-Dependent Kinetics of the Oxidation Reactions of OH with Succinic and Pimelic Acid in Aqueous Solution

Abstract

Rate constants for the aqueous-phase reactions of the hydroxyl radical with the dicarboxylic acids, succinic acid and pimelic acid were determined using the relative rate technique over the temperature range 287 K ≤ T ≤ 318 K and at pH = 2.0, 4.6 or 4.9 and 8.0. OH radicals were generated by H2O2 laser flash photolysis while thiocyanate was used as a competitor. The pH values were adjusted to obtain the different speciation of the dicarboxylic acids. The following Arrhenius expressions were determined (in units of L mol-1 s-1): succinic acid, k(T, AH2) (2.1 x 0.1) ± 1010 exp[(-1530 x 250 K)/T], k(T, AH-) (1.8 x 0.1) ± 1010 exp[(-1070 x 370 K)/T], k(T, A2-) (2.9 x 0.2) ± 1011 exp[(-1830 x 350 K)/T] and pimelic acid, k(T, AH2) (7.3 x 0.2) ± 1010 exp[(-1040 x 140 K)/T], k(T, AH-) (1.8 x 0.1) ± 1011 exp[(-1200 x 240 K)/T], k(T, A2-) (1.4 x 0.1) ± 1012 exp[(-1830 x 110 K)/T]. A general OH radical reactivity trend for dicarboxylic acids was found as k(AH2) < k(AH-) < k(A2-). By using the pH and temperature dependent rate constants, source and sinking processes in the tropospheric aqueous phase can be described precisely. © 2020 by the authors

    Similar works