CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
A Tubular Electrochemical Reactor for Slurry Electrodes
Authors
Korcan Percin
Deniz Rall
Matthias Wessling
Oliver Zoellner
Publication date
1 January 2020
Publisher
Weinheim : Wiley-VCH
Doi
Cite
Abstract
The research on electrochemical reactors is mostly limited to planarly designed modules. In this study, we compare a tubular and a planar electrochemical reactor for the utilization of the slurry electrodes. Cylindrical formed geometries demonstrate a higher surface-to-volume ratio, which may be favorable in terms of current density and volumetric power density. A tubular shaped electrochemical reactor is designed with conductive static mixers to promote the slurry particle mixing, and the vanadium redox flow battery is selected as a showcase application. The new tubular design presents similar cell resistances to the previously designed planar battery and shows increased discharge polarization behavior up to 100 mA cm−2. The volumetric power density reaches up to 30 mW cm−3, which is two times higher than that of the planar one. The battery performance is further investigated and 85 % coulombic, 70 % voltage and 60 % energy efficiency is found at 15 mA cm−2 with 15 wt.% slurry content. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
Repositorium für Naturwissenschaften und Technik (TIB Hannover)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:oa.tib.eu:123456789/6414
Last time updated on 23/07/2022