Despite improved life expectancy compared to medical management alone, Ventricular Assist Device (VAD) recipients show survival rates of 80% at 12 months and 70% at 24 months. A large portion of VAD-associated mortality results from increased risk of stroke with an event frequency reported between 14-47%. Recent concerns have been raised about unprecedented increases of thrombus formation in VAD recipients with subsequent reports pointing towards implantation techniques as a critical contributor to these events. Thus, the overall prognosis with mechanical support can improve by advancing the surgeonโs approach to VAD implantation. Previous studies using Computational Fluid Dynamics (CFD) were aimed at reducing stroke rates by tailoring the VAD outflow graft (VAD-OG) angle to direct any circulating emboli away from the cerebral vessels. In-vitro, or benchtop, models are often developed as computational counterparts. In order to accurately model the hemodynamics in the cardiovascular system, pulsatile flow must be mimicked. This is achieved in the computational domain by what is called a Windkessel model. This project seeks to develop a physical analogy to the Windkessel model for use in the benchtop experiments