Organ-on-a-Disc: A Scalable Platform Technology for the Generation and Cultivation of Microphysiological Tissues

Abstract

Organ-on-Chip (OoC) systems culture human tissues in a controllable environment under microfluidic perfusion and enable a precise recapitulation of human physiology. Although recent studies demonstrate the potential of OoCs as alternative to traditional cell assays and animal models in drug development as well as personalized medicine, unmet challenges in device fabrication, parallelization and operation hinder their widespread application. In order to overcome these obstacles, this thesis focuses on the development of the Organ-on-a-Disc technology for the scalable generation and cultivation of microphysiological tissues. Organ-Discs are fabricated using precise, rapid and scalable microfabrication techniques. They enable the pump- and tubing-free perfusion as well as the parallelized generation and culture of tailorable and functional microtissues using rotation-based operations. The Organ-Disc setup is suitable for versatile tissue readouts, treatments and even whole blood perfusion with minimal handling and equipment requirements. Overall, the Organ-Disc creates a scalable and userfriendly platform technology for microphysiological tissue models and paves the way for their transition towards high-throughput systems.:Abbreviations Symbols 1 Introduction 2 Background 2.1 Fluid Dynamics 2.1.1 Flow Equations 2.1.2 Hydraulic Resistance 2.1.3 Wall Shear Stress 2.1.4 Centrifugal Microfluidics 2.2 Microfluidic Chip Fabrication 2.2.1 Chip Materials 2.2.2 Microstructuring 2.2.3 Bonding 3 State of the Art 3.1 Cell Culture Systems 3.2 3D Tissue Generation in Microfluidic Systems 3.3 Organ-on-Chip 3.4 Scale-up of Organ-on-Chip Systems 3.4.1 Scalable Fabrication Technologies 3.4.2 Parallelization Approaches 3.4.3 Integrated Fluid Actuation 3.5 Centrifugal Microfluidics 4 Objectives 5 Materials and Methods 5.1 Organ-Disc Fabrication 5.1.1 Materials 5.1.2 2D Structuring 5.1.3 Hot Embossing Stamp Fabrication TPE Hot Embossing 5.1.4 Bonding Solvent Vapor Bonding Thermal Fusion Bonding TPE Bonding 5.1.5 Characterization Methods Structure Sizes Bonding Strength Optical Properties 5.2 Organ-Disc Spinner 5.2.1 Centrifugal Loading Setup 5.2.2 Centrifugal Perfusion Setup 5.2.3 Peristaltic Pumping Setup 5.3 Organ-Disc Perfusion 5.3.1 Centrifugal Perfusion 5.3.2 Peristaltic Perfusion 5.4 Preparatory Cell Culture 5.5 Organ-Disc Cell Loading 5.5.1 Centrifugal Cell Loading 5.5.2 Endothelial-lining 5.6 Organ-Disc Cell Culture 5.6.1 Staining and Imaging Live Cell Labeling Live/Dead Staining CD106 Staining CD41 Staining Fixation, Permeabilization and Blocking Actin/Nuclei Staining CD31/Nuclei Staining 5.6.2 Media Analysis 5.6.3 Endothelial Cell Activation 5.6.4 Whole Blood Perfusion 5.7 Data Presentation and Statistics 6 Concept and Design 6.1 Organ-Disc Technology 6.2 Organ-Disc Design 6.3 Centrifugal Cell Loading 6.4 Endothelial Cell Lining 6.5 Centrifugal Perfusion 6.6 Peristaltic Perfusion 7 Building Blocks 7.1 Microfabrication Technology 7.1.1 Structuring 2D Structuring Hot Embossing 7.1.2 Bonding Solvent Vapor Bonding Thermal Fusion Bonding TPE Bonding 7.2 Organ-Disc Spinner 8 Perfusion 8.1 Centrifugal Pumping 8.2 Peristaltic Pumping 9 Tissue Generation and Culture 9.1 3D Tissue Generation 9.2 Stratified Tissue Construction 9.3 Generation of Endothelial-lined Channels 9.4 Perfusion of Endothelial-lined Channels 9.4.1 Media Monitoring Evaporation Cell Metabolism 9.4.2 Inflammatory Cell Stimulation 9.4.3 Whole Blood Perfusion 10 Discussion 10.1 Organ-Disc Technology 10.2 Scalable, Precise and Robust Organ-Disc Fabrication 10.2.1 Fabrication of Thermoplastic Organ-Discs 10.2.2 Fabrication of TPE Modules 10.2.3 Integration of TPE Modules to Organ-Discs 10.3 Tunable, Pump- and Tubing-free Perfusion 10.4 On-Disc Tissue Culture 10.4.1 3D Tissues 10.4.2 Blood Vessel-like Structures 10.4.3 Tissue Characterization and Treatment 10.5 On-Disc Blood Perfusion 11 Summary and Conclusion 12 References 13 AppendixIn Organ-on-Chip (OoC)-Systemen werden menschliche Gewebe mittels mikrofluidischer Versorgung in einer kontrollierten Umgebung kultiviert und so die Physiologie des Menschen nachgebildet. Obwohl aktuelle Studien zeigen, dass dieser Ansatz Alternativen zu herkömmlichen Zellbasierten Tests und Tiermodellen in der Arzneimittelentwicklung und der personalisierten Medizin bietet, stehen einer breiteren Anwendung Hürden im Bereich der Herstellung, Parallelisierung und Handhabung im Weg. Deshalb ist das Ziel dieser Arbeit die Entwicklung der Organ-on-a-Disc-Technologie, die eine skalierbare Erzeugung und Kultur von mikrophysiologischen Geweben ermöglicht. Für die Herstellung von der Organ-Disc kommen präzise, schnelle und skalierbare Mikrofabrikationsmethoden zum Einsatz. Die Organ-Disc schafft die Basis für die parallelisierte Erzeugung und Kultur von maßgeschneiderten und funktionellen Mikrogeweben, sowie deren Versorgung durch rotationsbasierte Prozesse und ohne zur Hilfenahme von Pumpen oder Schläuchen. Die Organ-Disc eignet sich für unterschiedliche Charakterisierungsmethoden sowie der Gewebestimulation und sogar der Vollblutperfusion mit minimalem Aufwand und Equipment. Insgesamt stellt die Organ-Disc eine skalierbare und benutzerfreundliche Plattformtechnologie für mikrophysiologische Modelle dar und bereitet den Weg für Hochdurchsatzanwendungen.:Abbreviations Symbols 1 Introduction 2 Background 2.1 Fluid Dynamics 2.1.1 Flow Equations 2.1.2 Hydraulic Resistance 2.1.3 Wall Shear Stress 2.1.4 Centrifugal Microfluidics 2.2 Microfluidic Chip Fabrication 2.2.1 Chip Materials 2.2.2 Microstructuring 2.2.3 Bonding 3 State of the Art 3.1 Cell Culture Systems 3.2 3D Tissue Generation in Microfluidic Systems 3.3 Organ-on-Chip 3.4 Scale-up of Organ-on-Chip Systems 3.4.1 Scalable Fabrication Technologies 3.4.2 Parallelization Approaches 3.4.3 Integrated Fluid Actuation 3.5 Centrifugal Microfluidics 4 Objectives 5 Materials and Methods 5.1 Organ-Disc Fabrication 5.1.1 Materials 5.1.2 2D Structuring 5.1.3 Hot Embossing Stamp Fabrication TPE Hot Embossing 5.1.4 Bonding Solvent Vapor Bonding Thermal Fusion Bonding TPE Bonding 5.1.5 Characterization Methods Structure Sizes Bonding Strength Optical Properties 5.2 Organ-Disc Spinner 5.2.1 Centrifugal Loading Setup 5.2.2 Centrifugal Perfusion Setup 5.2.3 Peristaltic Pumping Setup 5.3 Organ-Disc Perfusion 5.3.1 Centrifugal Perfusion 5.3.2 Peristaltic Perfusion 5.4 Preparatory Cell Culture 5.5 Organ-Disc Cell Loading 5.5.1 Centrifugal Cell Loading 5.5.2 Endothelial-lining 5.6 Organ-Disc Cell Culture 5.6.1 Staining and Imaging Live Cell Labeling Live/Dead Staining CD106 Staining CD41 Staining Fixation, Permeabilization and Blocking Actin/Nuclei Staining CD31/Nuclei Staining 5.6.2 Media Analysis 5.6.3 Endothelial Cell Activation 5.6.4 Whole Blood Perfusion 5.7 Data Presentation and Statistics 6 Concept and Design 6.1 Organ-Disc Technology 6.2 Organ-Disc Design 6.3 Centrifugal Cell Loading 6.4 Endothelial Cell Lining 6.5 Centrifugal Perfusion 6.6 Peristaltic Perfusion 7 Building Blocks 7.1 Microfabrication Technology 7.1.1 Structuring 2D Structuring Hot Embossing 7.1.2 Bonding Solvent Vapor Bonding Thermal Fusion Bonding TPE Bonding 7.2 Organ-Disc Spinner 8 Perfusion 8.1 Centrifugal Pumping 8.2 Peristaltic Pumping 9 Tissue Generation and Culture 9.1 3D Tissue Generation 9.2 Stratified Tissue Construction 9.3 Generation of Endothelial-lined Channels 9.4 Perfusion of Endothelial-lined Channels 9.4.1 Media Monitoring Evaporation Cell Metabolism 9.4.2 Inflammatory Cell Stimulation 9.4.3 Whole Blood Perfusion 10 Discussion 10.1 Organ-Disc Technology 10.2 Scalable, Precise and Robust Organ-Disc Fabrication 10.2.1 Fabrication of Thermoplastic Organ-Discs 10.2.2 Fabrication of TPE Modules 10.2.3 Integration of TPE Modules to Organ-Discs 10.3 Tunable, Pump- and Tubing-free Perfusion 10.4 On-Disc Tissue Culture 10.4.1 3D Tissues 10.4.2 Blood Vessel-like Structures 10.4.3 Tissue Characterization and Treatment 10.5 On-Disc Blood Perfusion 11 Summary and Conclusion 12 References 13 Appendi

    Similar works