Experimental Investigations on Bubbly Two-Phase Flow in a Constricted Vertical Pipe

Abstract

Gas-liquid two-phase flows occur in many industrial applications and apparatuses. The design and optimization of such apparatuses and processes requires the numerical simulation of two-phase flows. However, two-phase flow simulations are still a challenging task, especially for industrial scales. Here, the simulation of large flow domains and high Reynolds number flows require a reduction of the resolved time-scales and length-scales by a high level of modeling to decrease the computational effort. Therefore, physics-based models are needed to depict the complex transport processes between the phases. Thus, two-phase flows are the object of ongoing research. Up to now, the majority of closure models for turbulence, interfacial forces or bubble breakup and coalescence were validated against experimental data derived from experiments in simple flow channel geometries like straight pipes. Their application for the simulation of two-phase flows with three-dimensional flow structures like e.g. recirculating areas, flow separation or strong velocity gradients requires constant experimental validation and further development. Hence, improved experimental methods are required for investigations of gas-liquid two-phase flows to provide reliable data for further development and validation of numerical flow simulation models. Therefore, experiments were performed in a constricted pipe under bubbly two-phase flow conditions. Three-dimensional flow structures were created by two types of flow constrictions for a variety of gas and liquid superficial velocities up to jg = 0.1400 m⋅s-1 and jl = 1.6110 m⋅s-1. The flow fields upstream and downstream of the flow constrictions were studied using ultrafast X-ray tomography and hot-film anemometry to obtain cross-sectional phase distribution, bubble characteristics and liquid velocity. The analysis of the ultrafast X-ray tomography image data was significantly improved by development of a histogram-based gas holdup calculation. Furthermore, the spatial dependence of the axial image plane distance was studied to improve the determination of axial bubble velocities and, thus, bubble sizes. The experimental method was advanced by simultaneous application of ultrafast X-ray tomography and hot-film anemometry. Eventually, the experimental data was compared to state-of-the-art Euler/Euler two-fluid simulations. The simulations were performed in the framework of a parallel doctoral thesis in the Experimental Thermal Fluid Dynamics department at the Helmholtz-Zentrum Dresden – Rossendorf by Ms. Sibel Tas-Koehler following the baseline approach. The results were compared in terms of the phase distribution, bubble sizes and gas velocity for two operating conditions using the homogeneous multiple size group model.Zweiphasenströmungen aus Gasen und Flüssigkeiten treten in vielen industriellen Anwendungen und Apparaten auf. Um einen sicheren, zuverlässigen und optimalen Betrieb einzelner Komponenten und gesamter Anlagen zu gewährleisten, sind die Strömungen Gegenstand zahlreicher Untersuchungen. Numerische Simulationen sind ein unverzichtbares Instrument, um Prozesse unter diesen Aspekten zu bewerten. Die Simulation von Zweiphasenströmungen, insbesondere im industriellen Maßstab, ist jedoch nach wie vor eine anspruchsvolle Aufgabe. Um den Rechenaufwand zu verringern und die Simulation von großen Strömungsgebieten und Strömungen mit hohen Reynoldszahlen zu ermöglichen, ist ein hohes Maß an Modellierung notwendig. Gleichzeitig wurden die meisten Schließungsmodelle zur Beschreibung von Turbulenz, Grenzflächenkräften oder Blasenzerfall und -koaleszenz für einfache Geometrien wie beispielsweise gerade Rohre entwickelt. Die Anwendung dieser Modelle für die Simulation von Zweiphasenströmungen mit dreidimensionalen Strömungsstrukturen, wie z.B. Rezirkulationsgebieten, Strömungsablösungen oder starken Geschwindigkeitsgradienten, erfordert eine ständige experimentelle Validierung und Weiterentwicklung. Dies wiederum erfordert eine immer höhere Auflösung der eingesetzten Messsysteme und steigende Qualität der experimentellen Daten. Um verlässliche Daten für die Weiterentwicklung und Validierung von Modellen für die numerische Strömungssimulation zu erhalten sind daher verbesserte experimentelle Methoden zur Untersuchung von Gas-Flüssig-Strömungen erforderlich. Aus diesem Grund wurden Experimente an einer Blasenströmung in einem Rohr mit einer Strömungsverengung durchgeführt. Zwei Arten von Verengungen wurden genutzt, um dreidimensionale Strömungsstrukturen für eine Vielzahl von Betriebsbedingungen zu erzeugen. Diese sind durch Gas- und Flüssigkeitsleerrohrgeschwindigkeiten bis zu jg = 0.1400 m⋅s-1 und jl = 1.6110 m⋅s-1 definiert. Um die Phasenverteilung im Querschnitt der Strömung, Blaseneigenschaften und die Flüssigphasengeschwindigkeit stromauf- und -abwärts der Verengung zu ermittelt, wurde die Strömung mit Hilfe der ultraschnellen Röntgentomographie und Heißfilm-Anemometrie untersucht. Die Datenanalyse für die Bilddaten der ultraschnellen Röntgentomographie wurde durch die Entwicklung einer Histogramm-basierten Gasgehaltsberechnung erheblich verbessert. Um die Bestimmung der axialen Blasengeschwindigkeiten und damit der Blasengrößen zu verbessern, wurde außerdem die räumliche Abhängigkeit des axialen Bildebenenabstands untersucht. Die experimentellen Methoden wurden durch die gleichzeitige Anwendung von ultraschneller Röntgentomographie und Heißfilm-Anemometrie weiterentwickelt. Die experimentellen Daten wurden mit dem Stand der Technik von Euler/Euler-Zweiphasen-Simulationen verglichen. Die Simulationen wurden im Rahmen eines parallelen Promotionsvorhabens in der Abteilung Experimentelle Thermofluiddynamik am Helmholtz-Zentrum Dresden – Rossendorf von Frau Sibel Tas-Köhler durchgeführt und folgten der Baseline-Modell Strategie. Die Ergebnisse wurden unter Verwendung des homogenen Modells mehrerer Größenklassen bezüglich der Phasenverteilung, der Blasengrößen und der Gasgeschwindigkeit für zwei Betriebsbedingungen verglichen

    Similar works