DEVELOPMENT OF A CONTROL ALGORITHM FOR A PARALLEL HYBRID POWERTRAIN

Abstract

The current legislation calls for fast electrification of vehicle powertrains, since it is necessary to fulfil the CO2 requirements for the vehicle fleets. The hybrid electric vehicles (HEV) with parallel powertrain topologies – together with pure battery electric vehicles (BEV) – are the most common ways of electrification. However, the HEV powertrain – opposed to the BEV or conventional powertrain – poses an interesting challenge associated with the control system design to achieve the ideal power split between an internal combustion engine (ICE) and electrical machines (EM) during the whole vehicle operation.The presented paper sums up the specific functions and requirements on a control system, together with the description of general control strategy options for a HEV powertrain. The proposed control strategy then combines heuristic rules with a suboptimal numerical control method, calculating the optimal power split ratio based on the efficiencies of ICE and EMs. This control strategy is built into a modular algorithm in Matlab/Simulink for two different parallel HEV powertrain topologies: P2 and P0P4. It is subsequently coupled with a vehicle models created in GT-Suite environment and tested on a WLTC homologation driving cycles. The following simulation tests show the fuel consumption reduction potential for chosen HEV topologies working in hybrid modes, in comparison to a base operation with conventional mode only. Yet, the heuristic rules can be further optimized to obtain even better overall results.Současná legislativa tlačí výrobce vozidel k okamžité elektrifikaci pohonu, protože je to v tuto chvíli jediná možnost, jak dostát požadavkům na flotilové emise CO2. Nejběžnější formou elektrifikace pohonu jsou v dnešní době vozidla s paralelním hybridním pohonem anebo bateriové elektromobily. Nicméně hybridní pohon, na rozdíl právě od konvenčního nebo čistě elektrického pohonu, představuje zajímavé výzvy spojené s návrhem řídicího algoritmu, který musí v každém okamžiku zajišťovat optimální rozdělení výkonu mezi spalovací motor a elektromotor.Tento článek v úvodu krátce shrnuje specifické funkce a požadavky na takový řídicí algoritmus, společně s obecným přehledem možných řídicích strategií hybridních vozidel. Následně je navržena řídicí strategie kombinující heuristická pravidla se suboptimální numerickou metodou, která vypočítává parametr optimálního dělení výkonu na základě účinností spalovacího motoru a elektromotoru. Na základě navrhnuté strategie je v programu Matlab/Simulink vytvořen modulární řídicí algoritmus pro dvě paralelní hybridní topologie: P2 a P0P4, který je následně propojen s modely vozidel vytvořenými v simulačním prostředí GT-Suite a testován v homologačním cyklu WLTC. Nakonec je prezentováno několik testů řídicího algoritmu, které demonstrují úsporu paliva vybraných topologií hybridního vozidla pracujících v hybridních režimech, ve srovnání s provozem pouze v konvenčním režimu pohonu. Avšak heuristická pravidla mohou být dále optimalizována, s cílem dosáhnout ještě příznivějších celkových výsledků

    Similar works