The Design of Robotic Arm Adaptive Fuzzy Controller Based on Oscillator and Differentiator

Abstract

State variables are acquired when tracking the trace of the robotic arm with adaptive fuzzy controller. Since some variables are difficult to or cannot be measured directly, we introduced the second order oscillator and the second order differentiator that converges in finite time to obtain the value of each state variable. In this paper, a model based on the dynamics analysis of robotic arm was build to design the second order oscillator and the second order differentiator that converges in finite time to obtain the value of each state variable. The designed adaptive fuzzy controller for robotic arm achieved high accuracy in trace tracking. Simulation results of two-link robotic arm show the adaptive fuzzy controller for robotic arm based on differentiators is adaptable, flexible. This controller is simple to design, easy to implement, and has a good value for the application of robotic arm system

    Similar works