Suppressed Stochastic Switching Behavior and Improved Synaptic Functions in an Atomic Switch Embedded with a 2D NbSe2Material

Abstract

We investigated chemical vapor-deposited (CVD) two-dimensional (2D) niobium diselenide (NbSe2) material for the resistive switching and synaptic characteristics. Three different atomic switch devices with Ag/HfO2/Pt, Ag/Ti/HfO2/Pt, and Ag/NbSe2/HfO2/Pt were studied as both memory and neuromorphic devices. Both the inserted Ti and NbSe2 buffer layers effectively control the stochastic Ag-ion diffusion, leading to suppressed variation of switching characteristics, which is a critical issue in an atomic switch device. Especially, the device with the 2D NbSe2 buffer layer strikingly enhanced the device reliability in both endurance and retention. In conjunction with scanning transmission electron microscopy (STEM) and energy-dispersive spectrometry (EDS) analysis of the control of the Ag-ion migration, it was understood that filament connection is interrelated with the SET and RESET processes. Besides resistive behaviors in the memory device, various synapse functions such as spike-rate-dependent plasticity (SRDP), forgetting curve, potentiation, and depression were demonstrated with an atomic switch with the 2D NbSe2 buffer layer. Furthermore, the emulated long-term synaptic property was simulated using the MNIST 28 × 28 pixel database. Using adopting a CVD 2D NbSe2 blocking layer, the stochastic Ag-ion diffusion behavior is well-controlled and therefore stable switching and synapse functions are attained. ©N

    Similar works

    Full text

    thumbnail-image