CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Suppressed Stochastic Switching Behavior and Improved Synaptic Functions in an Atomic Switch Embedded with a 2D NbSe2Material
Authors
Changhwan Choi
Jungmin Choi
+4 more
Yu-Rim Jeon
Yonghun Kim
Jung-Dae Kwon
Min Hyuk Park
Publication date
1 February 2021
Publisher
'American Chemical Society (ACS)'
Abstract
We investigated chemical vapor-deposited (CVD) two-dimensional (2D) niobium diselenide (NbSe2) material for the resistive switching and synaptic characteristics. Three different atomic switch devices with Ag/HfO2/Pt, Ag/Ti/HfO2/Pt, and Ag/NbSe2/HfO2/Pt were studied as both memory and neuromorphic devices. Both the inserted Ti and NbSe2 buffer layers effectively control the stochastic Ag-ion diffusion, leading to suppressed variation of switching characteristics, which is a critical issue in an atomic switch device. Especially, the device with the 2D NbSe2 buffer layer strikingly enhanced the device reliability in both endurance and retention. In conjunction with scanning transmission electron microscopy (STEM) and energy-dispersive spectrometry (EDS) analysis of the control of the Ag-ion migration, it was understood that filament connection is interrelated with the SET and RESET processes. Besides resistive behaviors in the memory device, various synapse functions such as spike-rate-dependent plasticity (SRDP), forgetting curve, potentiation, and depression were demonstrated with an atomic switch with the 2D NbSe2 buffer layer. Furthermore, the emulated long-term synaptic property was simulated using the MNIST 28 × 28 pixel database. Using adopting a CVD 2D NbSe2 blocking layer, the stochastic Ag-ion diffusion behavior is well-controlled and therefore stable switching and synapse functions are attained. ©N
Similar works
Full text
Available Versions
SNU Open Repository and Archive
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:s-space.snu.ac.kr:10371/18...
Last time updated on 06/07/2022