Evolution of the Electrode–Electrolyte Interface of LiNi0.8Co0.15Al0.05O2\mathrm{LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}} Electrodes Due to Electrochemical and Thermal Stress

Abstract

For layered oxide cathodes, impedance growth and capacity fade related to reactions at the cathode–electrolyte interface (CEI) are particularly prevalent at high voltage and high temperatures. At a minimum, the CEI layer consists of Li2_2CO3_3, LiF, reduced (relative to the bulk) metal-ion species, and salt decomposition species, but conflicting reports exist regarding their progression during (dis)charging. Utilizing transport measurements in combination with X-ray and nuclear magnetic resonance spectroscopy techniques, we study the evolution of these CEI species as a function of electrochemical and thermal stress for LiNi0.8Co0.15Al0.05O2\mathrm{LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}} (NCA) particle electrodes using a LiPF6_6 ethylene carbonate:dimethyl carbonate (1:1 volume ratio) electrolyte. Although initial surface metal reduction does correlate with surface Li2_2CO3_3 and LiF, these species are found to decompose upon charging and are absent above 4.25 V. While there is trace LiPF6_6 breakdown at room temperature above 4.25 V, thermal aggravation is found to strongly promote salt breakdown and contributes to surface degradation even at lower voltages (4.1 V). An interesting finding of our work was the partial reformation of LiF upon discharge, which warrants further consideration for understanding CEI stability during cycling

    Similar works

    Full text

    thumbnail-image

    Available Versions