An air plasma jet formed underwater using a coaxial DBD electrode configuration with gas flow is being studied for water treatment applications. The arc-like behavior of the discharge in the absence of any obvious return electrode is not well understood. This study seeks to understand the underlying nature of the arc-like jet mode by studying the evolution of the discharge from microdischarge to jet mode. Photographic and spectroscopic data are used to develop a phenomenological model of discharge evolution. Time-averaged spectra were used to assign an average plume and electron temperature. Calculated jet temperatures were consistent with observed affects such as melting and oxide layer formation on a downstream substrate. The capacity of the microdischarge mode to decompose organic dye in water as a function of time, confirmed previously in the jet mode, was also demonstrated in the absence of the jet.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90806/1/0963-0252_20_3_034018.pd