Les syndromes d’insuffisance médullaire sont liés à des mutations constitutionnelles à l’origine d’une hématopoïèse déficiente chez les patients atteints. Ils représentent un groupe hétérogène de maladies syndromiques, et impliquent plusieurs familles de gènes avec des mécanismes biologiques différents conduisant à l’insuffisance médullaire. Ces maladies prédisposent à une évolution clonale somatique, avec un risque accru de développer un syndrome myélodysplasique (SMD) ou une leucémie aigüe myéloïde (LAM) au cours du temps. Nous avons séquencé et analysé l’exome d’ADN fibroblastique d’une cohorte de 179 patients ayant des insuffisances médullaires, des SMD ou des LAM, supposés d’origine constitutionnelle mais sans diagnostic établi. Ce travail a permis de porter un diagnostic moléculaire chez 86 (48%) patients, et de participer à la description de nouveaux syndromes impliquant les gènes SAMD9/SAMD9L (N=16/86, 18,6%), MECOM/EVI1 (N=6, 7%) et ERCC6L2 (N=7, 8,1%). Le suivi longitudinal des patients nous a permis de décrire un modèle d’évolution clonale particulier chez les patients ayant des mutations SAMD9/SAMD9L. Le syndrome d’insuffisance médullaire le plus fréquent est la maladie de Fanconi (AF ou FA), causée par une mutation germinale dans un des gènes de la voie de réparation FA/BRCA. Les cellules des patients FA ont une instabilité chromosomique liée à un défaut de réparation, avec une pression de sélection conduisant à une évolution clonale prototypique. Nous avons étudié une cohorte de 335 patients FA et confirmé de façon statistiquement significative l’ordre d’apparition des évènements cytogénétiques de ces patients au cours de l’évolution clonale et de la leucémogenèse : 1q+, 3q+, -7/del7q, délétion ou mutation RUNX1. L’étude moléculaire longitudinale des patients (NGS panel, WES, WGS) a confirmé un mécanisme oncogénique en rapport avec une instabilité chromosomique plus que génomique. En nous intéressant à l’anomalie cytogénétique la plus fréquente et la plus précoce : le 1q+, nous avons observé que le point de cassure péricentromérique sur ce chromosome correspondait à un site fragile, réparé ensuite par une voie de réparation alt NHEJ. La zone minimale dupliquée contenait le gène MDM4, un inhibiteur des fonctions transactivatrices de p53, qui constituait ainsi un bon candidat pour conférer aux cellules un avantage clonal et initier la leucémogenèse. Nous avons d’abord confirmé que les cellules des patients 1q+ avaient une surexpression de MDM4 et une inactivation de la voie p53 en aval (RNAseq). Puis, nous avons montré que cette surexpression permettait de restaurer les capacités fonctionnelles des progéniteurs hématopoïétiques humains FA, de façon réversible avec l’inhibition de MDM4, constituant ainsi une éventuelle cible thérapeutique. Les syndromes d’insuffisance médullaire sont des maladies rares, et nos travaux, en parallèle de ceux d’autres équipes, ont participé à la description de nouveaux gènes impliqués. L’étude de l’évolution clonale de ces syndromes représente une évolution dans la compréhension de la physiopathologie des SMD/LAM, et peut conduire à l’identification de cibles thérapeutiques chez ces patients.Inherited bone marrow failure (IBMF) syndromes are heterogeneous diseases related to germ line mutations causing deficient hematopoiesis in mutated patients. Mutations involve several families of genes with different biological pathways driving the bone marrow failure. Most germ line genetic BMF disorders are characterized by a high propensity to clonal evolution and to develop MDS or AML. We used a whole-exome sequencing (WES) comprehensive analysis on fibroblast DNA samples from 179 patients with BMF/MDS of unresolved inherited origin. We provided a molecular diagnosis for 86/179 BMF patients (48%) including several seldom-reported IBMF/MDS entities like SAMD9/SAMD9L, MECOM/EVI1, and ERCC6L2. In particular, we described a specific clonal evolution in patients having mutations in SAMD9 and SAMD9L.Fanconi anemia (FA) is the most common IBMF syndrome, caused by a germ line mutation in one gene of the FA pathway. DNA repair deficiency in patient’s FA cells leads to chromosomal instability, which sets the stage for clonal evolution with a specific pattern of chromosomal abnormalities. We used integrated clinical, next-generation genomic and functional studies on primary cells from a National cohort of 335 FA patients, including 98 with clonal evolution, to decipher the mechanisms of BM progression. While relatively few somatic point mutations were found, unbalanced translocations leading to gross chromosomal copy-number abnormalities were most prominent. Whole genome sequencing revealed an FA-specific signature in which microhomology-mediated end joining (MMEJ) or non homologous end joining (NHEJ) repair had mediated genome rearrangements, consistent with the constitutive homologous repair defect. Longitudinal studies confirmed the order of chromosomal events during FA patients oncogenesis: 1q+, 3q+, -7/del7q, del or RUNX1 mutations. A major initial step was duplication of chromosome 1q, resulting in strong expression of MDM4, a negative regulator of p53, which can be targeted by MDM4-inhibitors.IBMF are rare diseases and our study participated to describe new genetic and clinical entities. Studying the clonal evolution of IBMF syndromes can help to understand MDS and AML pathophysiology and lead to therapeutic target identification