Robust numerical analysis of fibrous composites from X-ray computed tomography image data enabling low resolutions

Abstract

X-ray computed tomography scans can provide detailed information about the state of the material after manufacture and in service. X-ray computed tomography aided engineering (XAE) was recently introduced as an automated process to transfer 3D image data to finite element models. The implementation of a structure tensor code for material orientation analysis in combination with a newly developed integration point-wise fibre orientation mapping allows an easy applicable, computationally cheap, fast, and accurate model set-up. The robustness of the proposed approach is demonstrated on a non-crimp fabric glass fibre reinforced composite for a low resolution case with a voxel size of 64 μm corresponding to more than three times the fibre diameter. Even though 99.8% of the original image data is removed, the simulated elastic modulus of the considered non-crimp fabric composite is only underestimated by 4.7% compared to the simulation result based on the original high resolution scan

    Similar works