Exploring the impact of mechanical stress in neurodegeneration

Abstract

Mechanical stress has been proposed as a common denominator of different pathological conditions, including chronic inflammation and neurodegenerative disorders such as Alzheimer’s disease. While mechanical signals shape the brain development throughout morphogenesis, a role of mechanical forces in neurodegeneration has been suggested by the observed correlation of traumatic brain injury and cerebrovascular hemodynamic stress with the risk of some neurodegenerative disorders. Furthermore, neurodegenerative diseases and brain injury are associated with changes in composition and properties of the extracellular matrix. Using in vivo models, we provide genetic and molecular evidence that alterations in mechanotransduction could impact on neuronal survival and function in stressful conditions. Our findings help better understand the pathogenesis of neurodegenerative disorders and could lead to the identification of therapeutic targets

    Similar works