Mathematical modeling and computer simulation of microstructure transformations and mechanical properties during steel quenching : doctoral thesis

Abstract

Cilj ove doktorske disertacije bio je istraživanje mehanizama i kinetike mikrostrukturnih pretvorbi te mehaničkih svojstava pri gašenju čelika, a u svrhu što točnijeg definiranja fizikalnih pojava pri gašenju čelika. Sve veći zahtjevi u svezi kvalitete mehaničkih svojstava strojnih dijelova ukazuju na nužnost dobrog poznavanja povezanosti mikrostrukture, kemijskog sastava te mehaničkih svojstava. Iako je jednostavan za izvođenje, proces gašenja čelika spada u jedan od fizikalno najkompleksnijih inženjerskih postupaka jer pri gašenju čelika nastaje više procesa koji se međusobno isprepliću: fizikalni procesi mikrostrukturnih pretvorbi, procesi izmjene, prijelaza i provođenja topline, procesi stvaranja deformacija i zaostalih naprezanja te procesi formiranja i rasta pukotina. Na temelju provedenih teorijskih istraživanja, u radu su predložene metode određivanja kinetičkih parametara izotermičkog raspada austenita u ferit, perlit te bainit te izrazi za predviđanje kinetike raspada austenita. Nadalje, predloženi su izrazi za predviđanje vrijednosti termodinamičkih konstanti raspada austenita u ferit, perlit i bainit na temelju kemijskog sastava podeutektoridnih čelika. Također, predloženi su izrazi za procjenu tvrdoće mikrostrukturnih sastojaka čelika: ferita, perlita, binita i martenzita. Vlastiti algoritam razvijen u svrhu predviđanja kinetike raspada austenita i tvrdoće mikrostrukturnih sastojaka čelika implementiran je u računalni program za 3‐D simulaciju ohlađivanja uzoraka, čime je omogućena 3‐D simulacija raspada austenita pri gašenju čelika. Za provjeru rezultata računalne simulacije mikrostrukturnih pretvorbi te tvrdoće pri gašenju čelika korišten je nisko‐legirani čelik za poboljšanje: 42CrMo4 (DIN). Rezultati računalne simulacije ukazuju na to da se razvijeni matematički modeli mikrostrukturnih pretvorbi te tvrdoće mogu uspješno koristiti pri predviđanju rezultata raspada austenita za vrijeme gašenja čelika.The scope of this doctoral thesis has been the investigation of mechanisms and kinetics of microstructure transformation as well as the study of mechanical properties, with the objective of a more accurate defining of physical phenomena during steel quenching. Increasing technical requirements, relating to the quality of mechanical properties of the engineering components, imply a deep understanding of relations among microstructure, chemical composition and mechanical properties. Although the process of steel quenching is simple to apply, it is one of the physically most complicated engineering processes, which involves many interacting processes: physical processes of microstructure transformation, processes of heat exchange, transfer and heat conduction, processes of generation of deformation and residual stresses, and processes of crack formation and its growth. Based on theoretical investigations, methods for determination of kinetics parameters of isothermal austenite decomposition into ferrite, pearlite and bainite have been proposed, as well as equations of austenite decomposition kinetics. Furthermore, on the basis of the chemical composition of hypoeutectioid steels, equations for the estimation of thermodynamic constants of austenite decomposition into ferrite, pearlite and bainite have been put forward. Equations for the evaluation of the microstructure constituents` hardness have been also presented. A proper algorithm developed in order to predict the austenite decomposition kinetics as well as the microstructure constituents` hardness has been implemented in the 3‐D computer program for a 3‐D simulation of the specimen`s cooling, whereby the 3‐D simulation of the austenite decomposition during steel quenching is enabled. Low‐alloy steel for tempering 42CrMo4 (DIN) has been applied for the verification of results obtained by the computer simulation. The results of the computer simulation show that developed mathematical models of microstructure transformations and hardness can be efficiently used for the prediction of austenite decomposition during steel quenching

    Similar works

    Full text

    thumbnail-image