Fast Measurements of the Electron Beam Transverse Size and Position on SOLEIL Storage Ring

Abstract

On SOLEIL storage ring, three beamlines are dedicated to electron beam diagnostics: two in the X-ray range and one in the visible range. The visible range beamline uses the synchrotron radiation which is emitted in one of the ring dipoles and further extracted by a slotted mirror operated in surf-mode (surfing on the upper part of the synchrotron layer). The radiation in the visible range is then transported towards a diagnostic hutch in the experimental hall, allowing electron beam imaging at the source point onto a standard CCD camera. In the perspective of prototyping works for the eventually forthcoming upgrade of SOLEIL, and for the on-going commissioning of a new Multipole Injection Kicker (MIK), we recently installed in this hutch two new branches ended by two new cameras (a KALYPSO system and a standard CMOS camera). We report in this paper the optimization we performed on the mirror mode of operation, as well as on spectral filtering, polarization selection, image plane location, fast acquisition tools, to improve the resolution and increase the speed of our initial transverse beam size measurement at source point

    Similar works