Nove generacije rashladnih sustava s kompresijom pare koriste prirodne radne tvari radi
očuvanja okoliša. Među njima se ističe ugljikov dioksid (CO₂ ili R744). Njegova primjena iziskuje
posebne mjere zbog visokih radnih tlakova i temperatura odvođenja topline u blizini i iznad
kritične točke.
Razvijen je i vrednovan numerički model transkritičnog rashladnog sustava s CO₂ za simulacije u
prijelaznim i ustaljenim uvjetima rada, korištenjem realnih svojstava radne tvari. Svaka
komponenta rashladnog sustava opisana je svojim podmodelom. Posebno su razrađeni modeli
kompresora i izmjenjivača topline. Zbog specifičnosti CO₂ kao radne tvari i rada sustava u blizini
kritične točke, primjenjuju se trenutno najtočniji modeli jednadžbe stanja stvarne radne tvari i
njenih termodinamičkih i transportnih svojstava. Podmodeli su korišteni za pripremu
jednostavnijih i bržih modela konkretnih komponenti i integrirani su u jednostavniji model
cjelokupnog rashladnog sustava za točne, pouzdane i mnogo brže numeričke simulacije.
Detaljnim modelima komponenti obuhvaćeni su volumetrijski kompresori: klipni kompresori,
kompresori s rotirajućim klipom i spiralni kompresori, te cjevno-lamelni izmjenjivači topline.
Modeli su strukturirani prema načelima objektno orijentiranog programiranja, na način koji
omogućuje fleksibilno sastavljanje različitih konfiguracija transkritičnih rashladnih sustava s CO₂,
iz njegovih komponenti, bez potrebe za velikim vanjskim intervencijama u strukturi programa
numeričke simulacije. Razvijeni model rashladnog sustava i njegovih komponenti vrednovan je
usporedbom s eksperimentalnim mjerenjima. Postignuto je vrlo dobro slaganje rezultata
numeričkih simulacija s eksperimentalnim rezultatima. Vrednovani modeli uporabljeni su za uvid
u karakteristike i učinkovitost sustava u promjenjivim radnim uvjetima i za analizu nekoliko
jednostavnijih poboljšanja eksperimentalno istraženog rashladnog sustava s CO₂.
Razvijeni i vrednovani modeli će služiti kao alat za razvoj komponenti i cijelih sustava, kao i za
nalaženje potrebnih podataka za povećanje točnosti jednostavnih i brzih približnih modela.New generations of vapor compression refrigeration systems use natural refrigerants due to
ecological concerns. Carbon dioxide (CO₂ or R744) stands out among them. Its application
requires special measures due to high operating pressures and heat dissipation temperatures
near and above the critical point.
A numerical model of a transcritical refrigeration system with CO₂ has been developed, verified
and validated for simulations in transient and steady operating conditions, using real properties
for the refrigerant. Each component of the refrigerating system is described by its sub-model.
Models of compressors and heat exchangers have been specially developed. Due to the
specificity of CO₂ as a refrigerant and the operation of the system in the vicinity of the critical
point, currently the most accurate fundamental equation of state of the actual refrigerant and
its thermodynamic and transport properties is applied. Submodels were used to prepare simpler
and faster models of specific components and were integrated into a simpler model of the entire
refrigerating system for accurate, reliable, and much faster numerical simulations. Detailed
component models include volumetric compressors: reciprocating compressors, rotary piston
compressors and scroll compressors, and fin-and-tube heat exchangers. The models are
structured according to the principles of object-oriented programming, in a way that allows
flexible assembly of different configurations of transcritical refrigerating systems with CO₂ from
its components, without the necessity for extensive external interventions into the structure of
numerical simulation code. The developed model of the refrigerating system and its
components was validated by comparison with experimental measurements. A very good
agreement between the results of numerical simulations and experimental results has been
achieved. Validated models were used to gain insight into the properties and efficiency of the
system during transient operating conditions and to analyze several simpler improvements of
the experimentally investigated CO₂ refrigerating system.
Developed and validated models will be used for development of components and entire
systems, as well as to determine the necessary data to increase the accuracy of simple and fast
approximate models