Probabilistic Parametric Curves for Sequence Modeling

Abstract

Repräsentationen sequenzieller Daten basieren in der Regel auf der Annahme, dass beobachtete Sequenzen Realisierungen eines unbekannten zugrundeliegenden stochastischen Prozesses sind. Die Bestimmung einer solchen Repräsentation wird üblicherweise als Lernproblem ausgelegt und ergibt ein Sequenzmodell. Das Modell muss in diesem Zusammenhang in der Lage sein, die multimodale Natur der Daten zu erfassen, ohne einzelne Modi zu vermischen. Zur Modellierung eines zugrundeliegenden stochastischen Prozesses lernen häufig verwendete, auf neuronalen Netzen basierende Ansätze entweder eine Wahrscheinlichkeitsverteilung zu parametrisieren oder eine implizite Repräsentation unter Verwendung stochastischer Eingaben oder Neuronen. Dabei integrieren diese Modelle in der Regel Monte Carlo Verfahren oder andere Näherungslösungen, um die Parameterschätzung und probabilistische Inferenz zu ermöglichen. Dies gilt sogar für regressionsbasierte Ansätze basierend auf Mixture Density Netzwerken, welche ebenso Monte Carlo Simulationen zur multi-modalen Inferenz benötigen. Daraus ergibt sich eine Forschungslücke für vollständig regressionsbasierte Ansätze zur Parameterschätzung und probabilistischen Inferenz. Infolgedessen stellt die vorliegende Arbeit eine probabilistische Erweiterung für Bézierkurven (N\mathcal{N}-Kurven) als Basis für die Modellierung zeitkontinuierlicher stochastischer Prozesse mit beschränkter Indexmenge vor. Das vorgestellte Modell, bezeichnet als N\mathcal{N}-Kurven - Modell, basiert auf Mixture Density Netzwerken (MDN) und Bézierkurven, welche Kurvenkontrollpunkte als normalverteilt annehmen. Die Verwendung eines MDN-basierten Ansatzes steht im Einklang mit aktuellen Versuchen, Unsicherheitsschätzung als Regressionsproblem auszulegen, und ergibt ein generisches Modell, welches allgemein als Basismodell für die probabilistische Sequenzmodellierung einsetzbar ist. Ein wesentlicher Vorteil des Modells ist unter anderem die Möglichkeit glatte, multi-modale Vorhersagen in einem einzigen Inferenzschritt zu generieren, ohne dabei Monte Carlo Simulationen zu benötigen. Durch die Verwendung von Bézierkurven als Basis, kann das Modell außerdem theoretisch für beliebig hohe Datendimensionen verwendet werden, indem die Kontrollpunkte in einen hochdimensionalen Raum eingebettet werden. Um die durch den Fokus auf beschränkte Indexmengen existierenden theoretischen Einschränkungen aufzuheben, wird zusätzlich eine konzeptionelle Erweiterung für das N\mathcal{N}-Kurven - Modell vorgestellt, mit der unendliche stochastische Prozesse modelliert werden können. Wesentliche Eigenschaften des vorgestellten Modells und dessen Erweiterung werden auf verschiedenen Beispielen zur Sequenzsynthese gezeigt. Aufgrund der hinreichenden Anwendbarkeit des N\mathcal{N}-Kurven - Modells auf die meisten Anwendungsfälle, wird dessen Tauglichkeit umfangreich auf verschiedenen Mehrschrittprädiktionsaufgaben unter Verwendung realer Daten evaluiert. Zunächst wird das Modell gegen häufig verwendete probabilistische Sequenzmodelle im Kontext der Vorhersage von Fußgängertrajektorien evaluiert, wobei es sämtliche Vergleichsmodelle übertrifft. In einer qualitativen Auswertung wird das Verhalten des Modells in einem Vorhersagekontext untersucht. Außerdem werden Schwierigkeiten bei der Bewertung probabilistischer Sequenzmodelle in einem multimodalen Setting diskutiert. Darüber hinaus wird das Modell im Kontext der Vorhersage menschlicher Bewegungen angewendet, um die angestrebte Skalierbarkeit des Modells auf höherdimensionale Daten zu bewerten. Bei dieser Aufgabe übertrifft das Modell allgemein verwendete einfache und auf neuronalen Netzen basierende Grundmodelle und ist in verschiedenen Situationen auf Augenhöhe mit verschiedenen State-of-the-Art-Modellen, was die Einsetzbarkeit in diesem höherdimensionalen Beispiel zeigt. Des Weiteren werden Schwierigkeiten bei der Kovarianzschätzung und die Glättungseigenschaften des N\mathcal{N}-Kurven - Modells diskutiert

    Similar works