Statistical Image Reconstruction and Motion Estimation for Image-Guided Radiotherapy.

Abstract

Image reconstruction and motion estimation are very important for image-guided radiotherapy (IGRT). Three-dimensional reconstruction of patient anatomy using X-ray computed tomography (CT) allows identification of the location of a tumor prior to treatment. The locations of tumorsmay change during actual treatment due to movement such as respiratory motion. Motion estimation helps optimize the accuracy and precision of radiotherapy so that more of the normal surrounding tissue can be spared. This dissertation addresses several important issues related to these two core components of IGRT. Firstly, we developed two new separable footprint (SF) projector methods for X-ray conebeam CT. The SF projectors approximate the voxel footprint functions as 2D separable functions. The SF-TR projector uses trapezoid functions in the transaxial direction and rectangular functions in the axial direction, whereas the SF-TT projector uses trapezoid functions in both directions. Both SF projector methods are more accurate than the distance-driven (DD) projector, which is a current state-of-the-art method in the field. The SF-TT projector is more accurate than the SF-TR projector for rays associated with large cone angles. In addition, the SF-TR projector has similar computation speed with the DD projector and the SF-TT projector is about two times slower. Secondly, we proposed a statistical penalized weighted least-squares (PWLS) method with edge-preserving regularization to reconstruct two basis materials from a single-energy CT scan acquired with differential filtration, such as a split filter or a bow-tie filter. It requires only the use of suitable filters between the X-ray tube and the patient. For both filtration methods, the proposed PWLS method reconstructed soft tissue and bone images with lower RMS errors, reduced the beam-hardening artifacts much more effectively and produced lower noise, as compared with the traditional non-iterative Joseph and Spital method. Thirdly, we conducted an objective characterization of the influence of rotational arc length on accuracy of motion estimation for projection-to-volume targeting during rotational therapy. Simulations illustrate the potential accuracy of limited-angle projection-to-volume alignment. Registration accuracy can be sensitive to angular center, tends to be lower along direction of the projection set, and tends to decrease away from the rotation center.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86254/1/yonglong_1.pd

    Similar works

    Full text

    thumbnail-image