Effects of microstructures on fatigue behavior of an Al-Mg-Sc alloy at an elevated temperature

Abstract

Polycrystalline Al-1wt%Mg-0.27wt%Sc alloys bearing Al3Sc particles with different average sizes of 4 and 11nm Polycrystalline Al-1wt%Mg-0.27wt%Sc alloys bearing Al3Sc particles with different average sizes of 4 and 11nm in diameter have been cyclically deformed at 423K under various constant stress amplitudes, and the relationship between fatigue characteristics and microstructure of the alloy has been investigated. The specimen bearing 11 nm particles exhibited a cyclic hardening to saturation, while in specimens with the small particles a cyclic softening was observed after initial hardening. In the specimen with large particles, dislocations were uniformly distributed under all applied stress amplitudes, whereas the specimens bearing small particles, in which cyclic softening occurred exhibited clearly developed slip bands. The cyclic softening for the latter specimen was explained by particle shearing within the strongly strained slip bands. The width of precipitate free zones (PFZs) has been found to be one of the factors affecting the fatigue life of the specimens at 423K. The two-step aging decreases the width of PFZs, resulting in increase in the fatigue life. © 2012 Trans Tech Publications, Switzerland

    Similar works