Cryptography with anonymity in mind

Abstract

Advances in information technologies gave a rise to powerful ubiquitous com- puting devices, and digital networks have enabled new ways of fast communication, which immediately found tons of applications and resulted in large amounts of data being transmitted. For decades, cryptographic schemes and privacy-preserving protocols have been studied and researched in order to offer end users privacy of their data and implement useful functionalities at the same time, often trading security properties for cryptographic assumptions and efficiency. In this plethora of cryptographic constructions, anonymity properties play a special role, as they are important in many real-life scenarios. However, many useful cryptographic primitives lack anonymity properties or imply prohibitive costs to achieve them. In this thesis, we expand the territory of cryptographic primitives with anonymity in mind. First, we define Anonymous RAM, a generalization of a single- user Oblivious RAM to multiple mistrusted users, and present two constructions thereof with different trade-offs between assumptions and efficiency. Second, we define an encryption scheme that allows to establish chains of ciphertexts anony- mously and verify their integrity. Furthermore, the aggregatable version of the scheme allows to build a Parallel Anonymous RAM, which enhances Anonymous RAM by supporting concurrent users. Third, we show our technique for construct- ing efficient non-interactive zero-knowledge proofs for statements that consist of both algebraic and arithmetic statements. Finally, we show our framework for constructing efficient single secret leader election protocols, which have been recently identified as an important component in proof-of-stake cryptocurrencies.Fortschritte in der Informationstechnik haben leistungsstarke allgegenwärtige Rechner hervorgerufen, während uns digitale Netzwerke neue Wege für die schnelle Kommunikation ermöglicht haben. Durch die Vielzahl von Anwendungen führte dies zur Übertragung von riesigen Datenvolumen. Seit Jahrzehnten wurden bereits verschiedene kryptographische Verfahren und Technologien zum Datenschutz erforscht und analysiert. Das Ziel ist die Privatsphäre der Benutzer zu schützen und gleichzeitig nützliche Funktionalität anzubieten, was oft mit einem Kompromiss zwischen Sicherheitseigenschaften, kryptographischen Annahmen und Effizienz verbunden ist. In einer Fülle von kryptographischen Konstruktionen spielen Anonymitätseigenschaften eine besondere Rolle, da sie in vielen realistischen Szenarien sehr wichtig sind. Allerdings fehlen vielen kryptographischen Primitive Anonymitätseigenschaften oder sie stehen im Zusammenhang mit erheblichen Kosten. In dieser Dissertation erweitern wir den Bereich von kryptographischen Prim- itiven mit einem Fokus auf Anonymität. Erstens definieren wir Anonymous RAM, eine Verallgemeinerung von Einzelbenutzer-Oblivious RAM für mehrere misstraute Benutzer, und stellen dazu zwei Konstruktionen mit verschiedenen Kompromissen zwischen Annahmen und Effizienz vor. Zweitens definieren wir ein Verschlüsselungsverfahren, das es erlaubt anonym eine Verbindung zwischen Geheimtexten herzustellen und deren Integrität zu überprüfen. Darüber hinaus bietet die aggregierbare Variante von diesem Verfahren an, Parallel Anonymous RAM zu bauen. Dieses verbessert Anonymous RAM, indem es mehrere Benutzer in einer parallelen Ausführung unterstützen kann. Drittens zeigen wir eine Meth- ode für das Konstruieren effizienter Zero-Knowledge-Protokolle, die gleichzeitig aus algebraischen und arithmetischen Teilen bestehen. Zuletzt zeigen wir ein Framework für das Konstruieren effizienter Single-Leader-Election-Protokolle, was kürzlich als ein wichtiger Bestandteil in den Proof-of-Stake Kryptowährungen erkannt worden ist

    Similar works