Boundary integral equations in Kinetic Plasma Theory

Abstract

In this thesis, we use boundary integral equations (BIE) as a powerful tool to gain new insights into the dynamics of plasmas. On the theoretical side, our work provides new results regarding the oscillation of bounded plasmas. With the analytical computation of the frequencies for a general ellipsoid we contribute a new benchmark for numerical methods. Our results are validated by an extensive numerical study of several three-dimensional problems, including a particle accelerator with complex geometry and mixed boundary conditions. The use of Boundary Element Methods (BEM) reduces the dimension of the problem from three to two, thus drastically reducing the number of unknowns. By employing hierarchical methods for the computation of the occurring nonlocal sums and integral operators, our method scales linearly with the number of particles and the number of surface triangles, where the error decays exponentially in the expansion parameter. Furthermore, our method allows the pointwise evaluation of the electric field without loss of convergence order. As we are able to compute the occurring boundary integrals analytically, we can precisely predict the electric field near the boundary. This property makes our method exceptionally well suited for the numerical simulation of plasma sheaths near irregular boundaries or of plasma-surface interaction such as etching of semiconductors.In der vorliegenden Arbeit nutzen wir Randintegralgleichungen als ein mächtiges Werkzeug, um neue Einsichten in die Dynamik von Plasmen zu gewinnen. Auf theoretischer Seite entwickelt diese Arbeit neue Resultate bezüglich der Oszillation beschränkter Plasmen. Durch die ana- lytische Berechnung der Frequenzen im Fall eines allgemeinen Ellipsoids stellen wir ein neues Testbeispiel für numerische Methoden bereit. Unsere Resultate werden durch umfangreiche numerische Untersuchen dreidimensionaler Beispiele validiert, etwa einen Partikelbeschleuniger mit komplexer Geometrie und gemischten Randwerten. Mithilfe der Randelementmethode reduziert sich die Dimension des Problems von drei auf zwei, womit sich die Anzahl der Un- bekannten drastisch reduziert. Dank der Nutzung hierarchischer Methoden zur Berechnung der auftauchenden nichtlokalen Summen und Integraloperatoren skaliert unsere Methode linear mit der Anzahl der Partikel und der Anzahl der Oberflächendreiecken, wobei der Fehler exponen- tiell im Entwicklungsparameter abfällt. Des Weiteren erlaubt unsere Methode die Berechnung des elektrischen Felds ohne Verringerung der Konvergenzordnung. Da wir die auftretenden Randintegrale analytisch berechnen können, können wir präzise Aussagen über das elektrische Feld nahe des Rands treffen. Dank dieser Eigenschaft ist unsere Methode außergewöhnlich gut geeignet, um Plasmaränder nahe irregulärer Ränder oder Plasma-Oberflächen-Interaktionen, etwa das Ätzen von Halbleitern, zu simulieren

    Similar works