Three‐Dimensional Brain MRI for DBS Patients within Ultra‐Low Radiofrequency Power Limits

Abstract

Background: For patients with deep brain stimulators (DBS), local absorbed radiofrequency (RF) power is unknown and is much higher than what the system estimates. We developed a comprehensive, highquality brain magnetic resonance imaging (MRI) protocol for DBS patients utilizing three-dimensional (3D) magnetic resonance sequences at very low RF power. Methods: Six patients with DBS were imaged (10 sessions) using a transmit/receive head coil at 1.5 Tesla with modified 3D sequences within ultra-low specific absorption rate (SAR) limits (0.1 W/kg) using T2, fast fluid-attenuated inversion recovery (FLAIR) and T1- weighted image contrast. Tissue signal and tissue contrast from the low-SAR images were subjectively and objectively compared with routine clinical images of six age-matched controls. Results: Low-SAR images of DBS patients demonstrated tissue contrast comparable to high-SAR images and were of diagnostic quality except for slightly reduced signal. Conclusions: Although preliminary, we demonstrated diagnostic quality brain MRI with optimized, volumetric sequences in DBS patients within very conservative RF safety guidelines offering a greater safety margin

    Similar works

    Full text

    thumbnail-image