A hybrid lagrangian-eulerian approach for simulation of bubble dynamics

Abstract

A mutiscale numerical approach is developed for the investigation of bubbly flows in turbulent environments. This consists of two different numerical approaches capable of capturing the bubble dynamics at different scales depending upon the relative size of the bubbles compared to the grid resolution: (i) fully resolved simulations (FRS) wherein the bubble dynamics and deformation are completely resolved, and (ii) subgrid, discrete bubble model where the bubbles are not resolved by the computational grid. For fully resolved simulations, a novel approach combining a particle-based, mesh-free technique with a finite-volume flow solver, is developed. The approach uses marker points around the interface and advects the signed distance to the interface in a Lagrangian frame. Interpolation kernel based derivative calculations typical of particle methods are used to extract the interface normal and curvature from unordered marker points. Unlike front-tracking methods, connectivity between the marker points is not necessary. For underresolved bubbles, a mixture-theory based Eulerian-Lagrangian approach accounting for volumetric displacements due to bubble motion and size variations is developed. The bubble dynamics is modeled by Rayleigh-Plesset equations using an adaptive timestepping scheme. A detailed verification and validation study of both approaches is performed to test the accuracy of the method on a variety of single and multiple bubble problems to show good predictive capability. Interaction of bubbles with a traveling vortex tube is simulated and compared with experimental data of Sridhar and Katz [1] to show good agreement.http://deepblue.lib.umich.edu/bitstream/2027.42/84270/1/CAV2009-final74.pd

    Similar works

    Full text

    thumbnail-image