Cardiorespiratory Function in Young Adults With a History of Covid-19 Infection

Abstract

Objective. Respiratory complications may persist several months into the recovery period following COVID-19 infection. This study evaluated respiratory function and oxygen saturation variability between young adults with a history of COVID-19 infection and controls. Associations between cardiorespiratory function with potential biobehavioral correlates of COVID-19 infection were also explored.Methods. 57 adults ages 18 to 65 participated in this study (24 COVID+, 33 Control). Spirometry was used to assess pulmonary function volumes of forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/FVC and peak expiratory flow (PEF). Exhaled nitric oxide (FeNO) was measured using the NiOX VERO, a handheld electrochemical nitric oxide analyzer and taken as a proxy of airway inflammation. Systemic inflammation levels were assessed using salivary concentrations of inflammatory biomarkers. Oxygen saturation variability was quantified via extended continuous oxygen saturation (SpO2) monitoring using linear and nonlinear analyses. Network physiology analysis was conducted to evaluate cardiorespiratory control between SpO2, heart rate (HR), respiratory rate and skin temperature signals measured by continuous ambulatory monitoring with an Equivital EQO2 LifeMonitor. Physical activity levels and sedentary time were assessed using 9-day accelerometry. COVID-19 symptom severity was assessed by participant self-report via questionnaires. Results. No group differences were observed for pulmonary function of FVC (COVID+: 4.22±1.01, C: 4.43±1.06 L, p=.663), FEV1 (COVID+: 3.45±0.72, C: 3.57±0.92 L, p=.865), PEF (COVID+: 349.63±105.54, C: 373.73±140.61 L/min, p=.370), or FeNO (COVID+: 16.61±13.04, C: 20.03±20.11 ppb, p=.285). Linear and nonlinear oxygen saturation variability did not differ between adults with a history of COVID-19 infection and controls with no history of infection (p\u3e0.05). Cardiorespiratory function measured using network analysis of did not differ between recovering COVID-19 individuals and controls (p\u3e0.05). Sedentary time was inversely associated with FEV1 (r=-.392, p=.040), PEF (r=-.579, p=.003), and IL-6 concentrations (r=- .370, p=.049). COVID-19 disease severity was inversely associated with FVC (r=-.461, p=.012) and FEV1 (r=-.365, p=.040). Number of symptoms was inversely associated with FVC (r=-.404, p=.025). Conclusions. Pulmonary function, inflammation levels and oxygen saturation variability were similar between individuals with a history of COVID-19 infection and controls without a history of COVID-19 infection. Network interactions between regulatory components of the cardiorespiratory system were also similar between recovering COVID-19 individuals and controls. Findings suggest that cardiorespiratory function and dynamic control of SpO2 may not be impaired following COVID-19 infection in young adults. Moreover, increased sedentary time and disease severity may have negative effects on pulmonary function in individuals recovering from COVID-19

    Similar works