CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Effect of well-dispersed surface-modified silica nanoparticles on crystallization behavior of poly (lactic acid) under compressed carbon dioxide
Authors
Pu Chen
V. Lotocki
+4 more
R. Nasseri
Chul B. Park
K. Sarikhani
Russell B. Thompson
Publication date
1 January 2016
Publisher
'Elsevier BV'
Doi
Cite
Abstract
The final publication is available at Elsevier via https://doi.org/10.1016/j.polymer.2016.06.019. © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this work, the crystallization behavior of poly (lactic acid) (PLA)/amine-modified silica nano- composites at different loadings of amine-modified silica (1, 2, and 8 wt %) under isothermal, non- isothermal, and isothermal under compressed CO2 is studied. A significant improvement in crystalliza- tion rate was observed after introduction of the nanoparticles. A modified Hoffman-Lauritzen nucleation theory was utilized to explain the facilitation and acceleration of the crystallization process of nano- composites with introducing the surface energy of the nanoparticles and interfacial energy between polymer/nanoparticle into the rate equation. After incorporation of the nanoparticles, three-dimensional spherulites formed sporadically in the PLA matrix based on the prediction of the Avrami exponents of the nanocomposites. High-pressure DSC results also showed an increase in the crystallization rate at 15 bar compared with the atmospheric pressure condition. However, an increase in pressure up to 21 bar had no significant effect on the crystallization rate. The PLA nanocomposites with lower molecular weights and D-content also showed a significant increase in the crystallization rate but with no change in the crys- tallization mechanism.Natural Sciences and Engineering Research Council (NSERC) of Canada || Network for Innovative Plastic Materials and Manufacturing Processes (NIPMMP) || Ontario Centers of Excellence || Canada Research Chairs (CRC)
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
University of Waterloo's Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:uwspace.uwaterloo.ca:10012...
Last time updated on 09/12/2021