International audienceGAIA will measure to unprecedent precision positions, movements, and parallaxes, by the superposition of two fields apart by 174deg, taken from the L2 Earth-Sun, about 1.5 million km from the ground. To achieve the aimed precision for stars, and particularly for solar system bodies, the instantaneous position and speed of the satellite must be known respectively to 150m and 2.5 mm/s. This translates to the GBOT (Ground Base Optical Tracking) requirement to deliver quasi-daily positions of the satellite at the accuracy of 10mas relatively to the GAIA's reference frame itself (Altmann et al., 2010, this proceeding). The challenge increases because the satellite will probably be dimmer than R 17th magnitude and will be moving on average at 30mas/s, and switching hemispheres between summer and winter. We will present the strategies worked out for the satellite centroid's determination, including tracking mode, binning, super-gaussian fit, blind co-addition of images; as well as the astrometric reduction open code designed to cope with this variety of conditions. We will show applications of these resources to observations of the satellites WMAP and PLANCK, and to fast asteroids