research

Livestock and water interactions in mixed crop-livestock farming systems of sub-Saharan Africa: interventions for improved productivity

Abstract

In sub-Saharan Africa (SSA), the increasing competition for water between various sectors is aggravated by growing demands for water, climate change and environmental degradation. One of the major consumers of water is livestock keeping, which is an important livelihood strategy for smallholder farmers in Africa. The water consumption for livestock production is currently increasing with the growing demands for livestock products. On the other hand, current low returns from livestock, limit its contribution to livelihoods, threaten environmental health and aggravate local conflicts. The objectives of this review are to (1) bring together the available knowledge in the various components of the livestock and water sectors, (2) identify promising strategies and interventions to improve the situation using the “livestock water productivity” (LWP) concept, and (3) identify critical research and development gaps. Improvements in LWP can lead to a positive impact on poverty reduction, resilience and environmental health, provided that interventions are well-targeted, community innovation and empowerment is achieved and appropriate dissemination and communication lead to awareness and adoption. Promising interventions are grouped in two domains. In the biophysical domain, numerous interventions related to feed, water and animal management can be applied to increase LWP. These should be complemented and integrated with interventions in the socio-political-economic domain. Enhancing the capacity of local institutions, improving market incentives and facilitating socioeconomic arrangements form part of the institutional improvements. A conducive policy framework, taking into account equity and gender and geared towards problem-solving local policies, improvements in infrastructure, price signals and land tenure systems, is a prerequisite for the successful application of the LWP concept. However, for the LWP concept to be widely applicable, knowledge gaps have to be filled, in terms of methodologies for quantifying water productivity and integrating animal, herd, farm, water catchment and basin scales. This paper suggests approaches for the integration of technological, policy and institutional interventions that would contribute to making the LWP concept operational

    Similar works