unknown

Ball-Covering Properties and Smoothness in Banach Spaces

Abstract

整个Banach空间几何学就是一部单位球和单位球面的几何学.即使是其他学科分支,直接用“球”研究其他方面的内容,很多也都成为相应分支的重要组成部分。如属于Banach空间几何范畴的Mazurintersection性质,最优化理论的装球问题(Packingproblem),非线性泛函分析的拓扑度理论等等。本文是在程立新教授以新视角提出的“单位球面被不含原点的球所覆盖的球数问题”下考察Banach空间中的球覆盖性质.Banach空间X称为具有球覆盖性质(简记为BCP),如果X的单位球面可被可数多个不含原点的球所覆盖。本文通过在ll^\infty上构造不同的范数证明了Banach空间X的球覆盖性...The whole Banach space geometry is a geometry about the unit ball and unit sphere of Banach spaces. Even among other knowledge branches, the direct uses of “ball” to study other aspects of knowledge became important parts of the corresponding branches. For instance, the Mazur intersection property which belongs to Banach space geometry;the measure of non-compactness with respect to topological deg...学位:理学硕士院系专业:数学科学学院数学与应用数学系_基础数学学号:20042300

    Similar works