Microscopy and sensing through scattering tissues using optical microresonators

Abstract

V večini bioloških tkiv močno sipanje svetlobe omejuje uporabo standardne mikroskopije. Tako so v zadnjem obdobju bile razvite številne nove metode in pristopi, ki se osredotočajo na premostitev omenjene težave. V okviru tega dela smo razvili novo metodo za globinsko slikanje ter senzoriko v tkivih, ki izkorišča optične WGM (ang. whispering gallery mode) mikroresonatorje in njihove značilnosti. Lastnosti kot so ozka spektralna emisija in velika občutljivost na spremembe okolja so ključna prednost WGM mikroresonatorjev v primerjavi s standardnimi fluorescentnimi označevalci, ki se tipično uporabljajo v bioloških raziskavah. WGM mikroresonatorje, ki se nahajajo pod oziroma znotraj sipalnega medija, lahko lokaliziramo z veliko natančnostjo s pomočjo dekompozicije zajetega spektralnega signala na prispevke posameznih mikroresonatorjev. To je možno doseči zaradi izrazitih WGM resonanc, ki navkljub potovanju svetlobe preko sipajočega medija ostanejo praktično nespremenjene. WGM mikroresonatorje zaznamujejo edinstvene spektralne lastnosti. Njihovi spektri so medsebojno razločljivi v kolikor se njihove velikosti komaj znatno razlikujejo, kar dodatno omogoča označevanje, identificiranje in spremljanje individualnih celic, medtem ko analiza izsevanih spektrov omogoča zaznavanje oziroma senzoriko številnih parametrov kot so lomni količnik, pH ali temperatura okolice. Razvita metoda s sposobnostjo simultane lokalizacije ter senzorike predstavlja vsestransko orodje na področju globinskega slikanja v tkivih.In most biological tissues, strong scattering of visible light limits the use of standard microscopy. New approaches and methods that focus on overcoming this particular problem have been developing recently. In this work, we have developed a novel technique for deep tissue imaging and sensing that utilizes optical WGM (whispering gallery mode) microresonators and their properties. The properties of spectrally narrow emission and high sensitivity to the environment make WGM microresonators superior to the standard fluorescent probes typically used in biological research. WGM microresonators placed under scattering materials or embedded inside them can be localized with high precision by decomposing the acquired spectral signal into contributions from individual microresonators. This is possible due to the fact that strong WGM resonances are mainly unaffected when propagating through a scattering medium. The spectral characteristics of each WGM microresonator are unique as long as they differ in size by only a very small margin. This can further be used to tag, identify and track individual cells. Additionally, sensing of different parameters such as refractive index, pH or temperature of the surroundings is also possible by analyzing the spectra. Simultaneous sensing and localization capabilities make the developed method a versatile tool in the field of deep tissue imaging

    Similar works