S P I E - International Society for Optical Engineering
Abstract
Numerical techniques for a class of optimization problems associated with the thermal modeling of optomechanical systems are presented. Emphasis is placed on applications where radiation plays a dominant role. This work is motivated by the need for incorporating thermal analysis into integrated modeling of high-precision, space-borne optical systems. The specific problems of interest are thermal control to minimize the wavefront error by application of external heat loads, and the temperature estimation problem of predicting temperatures at arbitrary nodes of the model given noisy measurements on a subset of nodes. The proposed numerical techniques are briefly described and compared to existing algorithms. Their accuracy and robustness are demonstrated through numerical tests with models from ongoing NASA missions