Temporal variability of downward fluxes of organic carbon off Monterey Bay

Abstract

17 USC 105 interim-entered record; under review.Sediment traps were deployed at two depths (300 m and 1200 m) off Monterey Bay (36°40′N and 122°25′W, Central California) for 7.3 years (1998–2005). The sediment trap data provided information about the quantity and quality of settling material, and allowed exploration of the relationship of the sinking material with the environmental conditions in this coastal upwelling region. The magnitude and composition of the settling material were highly variable over time. Organic carbon (Corg) fluxes ranged between 4–296 mg C m−2 day−1 and 0.1–142 mg C m−2 day−1 for shallow and deep sediment traps, respectively. The time series of Corg vertical flux was characterized by pulses of intense fluxes that were associated with peaks of primary production, generally during upwelling periods. Despite considerable variability, fluxes varied seasonally with highest values during the upwelling season and the lowest in winter. Attenuation of Corg vertical fluxes with depth (300 m vs. 1200 m) varied between 31% and 24% except for the late upwelling period, when there was an increase with depth likely due to resuspension of material from Monterey Canyon. Calculation of a seasonal vertical budget of organic carbon off Monterey Bay resulted in a transfer between 4.0% and 4.9% of the primary production to the deep ocean, suggesting that coastal upwelling efficiently sequestered CO2.The principal source of support for these measurements was the David and Lucile Packard Foundation. CGC was partially supported by a National Research Council Fellowship at the Naval Postgraduate School.

    Similar works