Extending the BASE architecture for complex and reconfigurable cyber-physical systems using Holonic principles.

Abstract

Thesis (MEng)--Stellenbosch University, 2021.ENGLISH ABSTRACT: ndustry 4.0 (I4.0) represents the newest technological revolution aimed at optimising industries using drivers such as Cyber-Physical Systems (CPSs), the Internet of Things (IoT) and many more. In the past two decades, the holonic paradigm has become a major driver of intelligent manufacturing systems, making it ideal to advance I4.0. The objective of this thesis is to extend an existing holonic reference architecture, the Biography-Attributes-Schedule-Execution (BASE) architecture, for complex and reconfigurable CPSs. In the context of this thesis, complex and reconfigurable systems are considered to be systems that are comprised of many diverse, autonomous and interacting entities, and of which the functionality, organization or size is expected to change over time. The thesis applies the principles of holonic systems to manage complexity and enhance reconfigurability of CPS applications. The BASE architecture is extended for two reasons: to enable it to integrate many diverse entities, and to enhance its reconfigurability. With regards to research on holonic systems, this thesis aims to address two important functions for systems implemented using holonic principles, namely cooperation and cyber-physical interfacing The most important extensions made to the architecture were to enable scalability, refine the cooperation between holons, and integrate cyber-physical interfacing services as Interface Holons. These extensions include platform management components (e.g. a service directory) and standardised plugins (e.g. cyber-physical interfacing plugins). The extended architecture was implemented on an educational sheep farm, because of the many heterogeneous resources (sheep, camps, sensors, humans, etc.) on the farm that need to be integrated into a BASE architecture implemented CPS. This case study implementation had to integrate data from different sensors, provide live analysis of observed data and, when required, notify the physical world of any problems in the CPS. At the end of the implementation, an evaluation was done using the requirements of a complex, reconfigurable CPS as evaluation criteria. This evaluation involved setting up quantitative and qualitative evaluation metrics for the evaluation criteria, doing the evaluations, and discussing what the results from the different evaluations indicate about the effectiveness and efficiency of the extensions made to the BASE architecture. The extensions made to the BASE architecture were found to improve robustness and resilience. The use of Erlang was found to play a very important role in the resulting reliability. The extensions also helped to fully address the original BASE architecture’s scalability shortcomings and to increase development productivity. Lastly, the extensions show the benefits of using service orientation to enable cooperation between holons and how extracting all cyber-physical interfacing of a system into dedicated Interface Holons reduces development time, improves reusability and enhances diagnosability of interfacing problems.AFRIKAANSE OPSOMMING: ndustrie 4.0 (I4.0) is die nuutste tegnologiese revolusie en dit is daarop gemik om industrieë te optimiseer deur middel van drywers soos Kuber-Fisiese Stelsels (KFSs), die Internet of Things (IoT) en vele meer. In die afgelope twee dekades het die holoniese paradigma ʼn belangrike drywer van intelligente vervaardigingstelsels geword, wat dit ideaal maak om I4.0 te bevorder. Die doel van hierdie tesis is om ‘n bestaande holoniese verwysings argitektuur, die Biography-Attributes-Schedule-Execution (BASE-) argitektuur, uit te brei vir komplekse, herkonfigureerbare KFSs. In die konteks van hierdie tesis, word komplekse en herkonfigureerbare stelsels gesien as stelsels wat bestaan uit menige diverse, outonome entiteite wat met mekaar interaksie het en waarvan die funksionaliteit, organisasie en grootte verwag is om te verander met verloop van tyd. Hierdie tesis pas die beginsels van holoniese stelsels toe om die kompleksiteit van KFSs te bestuur en om herkonfigureerbaarheid van KFSs te verbeter. Die BASE-argitektuur word uitgebrei om twee redes, naamlik om die integrasie van menige diverse entiteite te ondersteun en om die argitektuur se herkonfigureerbaarheid te verbeter. Die studie sal ‘n navorsingsbydrae lewer oor holoniese stelsels deur twee belangrike funksionaliteite van stelsels wat geïmplementeer is deur middel van holoniese stelsels aan te spreek – samewerking tussen holons en kuber-fisiese koppeling. Die belangrikste uitbreidings wat gemaak is aan die argitektuur was om skaleerbaarheid moontlik te maak, samewerking tussen holons te verfyn en om kuber-fisiese koppelingsdienste te integreer as holons. Hierdie uitbreidings sluit nuwe platformbestuurkomponente en gestandaardiseerde plugins in. Die uitgebreide argitektuur is geïmplementeer op ʼn opvoedkundige skaapplaas, omdat die skaapplaas baie heterogene hulpbronne (skape, kampe, sensors, mense, ens.) insluit wat in die BASE-argitektuur geïmplementeerde KFS geïntegreer kon word. v Hierdie gevallestudie-implementering moes data van verskillende sensors integreer, intydse analises doen van die waargeneemde data en wanneer nodig, ‘n entiteit in die fisiese wêreld inlig van enige probleme in die KFS. Aan die einde van die implementering is ʼn evaluering gedoen deur die vereistes van ʼn komplekse, herkonfigureerbare KFS as evalueringskriteria te gebruik. Die evaluering het bestaan uit die opstel van kwantitatiewe en kwalitatiewe evalueringsmaatreëls, die uitvoer van die evaluerings en ʼn bespreking van wat die evalueringsresultate aandui oor die effektiwiteit en doeltreffendheid van die uitbreidings wat aan die BASE- argitektuur gemaak is. Dit is bevind dat die uitbreidings wat gemaak is aan die BASE-argitektuur robuustheid en veerkragtigheid verbeter het. Die gebruik van Erlang het ʼn groot rol gespeel in die gevolglike betroubaarheid. Die uitbreidings aan die BASE- argitektuur het ook gehelp om die argitektuur volledig skaleerbaar te maak en om ontwikkelingsproduktiwiteit te verbeter. Laastens, bewys die uitbreidings die voordele van diensoriëntasie in die samewerking tussen holons en hoe die gebruik van Koppelings Holons (Interface Holons) ontwikkelingstyd verminder, die herbruikbaarheid van programbronkode verbeter en diagnoseerbaarheid van koppelingsprobleme versterk.Master

    Similar works