CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
research
Benchmarking multi-rate codon models
Authors
Wayne Delport
Mike B. Gravenor
+3 more
Spencer V. Muse
Sergei Kosakovsky Pond
Konrad Scheffler
Publication date
21 July 2010
Publisher
'Public Library of Science (PLoS)'
Doi
Abstract
CITATION: Delport, W. et al. 2010. Benchmarking multi-rate codon models. PLoS ONE, 5(7): e11587, doi:10.1371/journal.pone.0011587.The original publication is available at http://journals.plos.org/plosoneThe single rate codon model of non-synonymous substitution is ubiquitous in phylogenetic modeling. Indeed, the use of a non-synonymous to synonymous substitution rate ratio parameter has facilitated the interpretation of selection pressure on genomes. Although the single rate model has achieved wide acceptance, we argue that the assumption of a single rate of non-synonymous substitution is biologically unreasonable, given observed differences in substitution rates evident from empirical amino acid models. Some have attempted to incorporate amino acid substitution biases into models of codon evolution and have shown improved model performance versus the single rate model. Here, we show that the single rate model of non-synonymous substitution is easily outperformed by a model with multiple non-synonymous rate classes, yet in which amino acid substitution pairs are assigned randomly to these classes. We argue that, since the single rate model is so easy to improve upon, new codon models should not be validated entirely on the basis of improved model fit over this model. Rather, we should strive to both improve on the single rate model and to approximate the general time-reversible model of codon substitution, with as few parameters as possible, so as to reduce model over-fitting. We hint at how this can be achieved with a Genetic Algorithm approach in which rate classes are assigned on the basis of sequence information content. © 2010 Delport et al.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011587Publisher's versio
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Stellenbosch University SUNScholar Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:scholar.sun.ac.za:10019.1/...
Last time updated on 27/05/2016