Investigations on Physical Processes During Conductive Channel Formation in Vacuum Breakdown

Abstract

When the applied voltage and electric field exceed a certain threshold, a vacuum gap will breakdown, losing its insulating capability. Vacuum breakdown often occurs in devices such as vacuum circuit breakers, particle accelerators and spacecraft components, adversely affecting their normal operation. The formation of a conductive channel is crucial for a vacuum gap to complete the transition from an insulator to a conductor. A clear understanding of this process is indispensable for understanding the entire vacuum breakdown and optimizing the design of vacuum insulation. The current theories on conductive channel formation mostly agree that the generation of cathode glow/plasma is the starting point of constructing conductive channel, while the role of anode glow is controversial. The present dissertation adopted experimental methods such as electrical measurements, high-speed imaging, spectral analysis, microscopic morphology analysis, and energy spectrum analysis to obtain the electrical signals, optical radiation signals, electrode surface morphology, and electrode surface composition during vacuum breakdowns, and also established a simulation model of the breakdown process based on the PIC-MCC method. The roles played by the cathode and anode in the establishment of conductive channels are clarified from the viewpoints of sufficiency and necessity, revealing the formation mechanism of conductive channels. It is shown that the generation of cathode glow/plasma is a necessary condition for the start of vacuum breakdown, and the complete collapse of gap voltage is the indicator of conductive channel formation. Both the cathode and the anode provide atoms for the anode glow. The cathode contribution results from reflection of the ions in the expanding cathode plasma at the anode surface, which implies a major role of the cathode plasma expansion in constructing conductive channels. The atoms on the anode surface leave the anode and participate in the anode glow mainly due to the sputtering effect of the cathode ion flow, rather than the heating effect of the cathode electron flow on the anode surface. Both the establishments of anode glow and conductive channel attribute to the expansion of the cathode plasma, while neither the appearance nor the expansion of the anode glow is necessary for constructing conductive channels. It is finally proposed that the necessary and sufficient condition for conductive channel formation in vacuum breakdowns is the generation and expansion of the cathode plasma, which is also verified by the visual demonstration of vacuum breakdown process in the simulations. The conclusions obtained in this dissertation contribute in the better understanding of fundamentals of the theory for conductive channel formation, and contribute to the optimization of vacuum insulation design.Kun eristeenä toimivan tyhjiöraon yli asetettu jännite ja sähkökenttä ylittävät tietyn kynnysarvon, syntyy läpilyönti ja rako menettää eristävyytensä. Tyhjiöläpilyönnit ovat usein haitallisia monien laitteiden, kuten tyhjiökatkaisijoiden, hiukkaskiihdyttimien ja avaruusalusten komponenttien toiminnalle. Sähköä johtavan kanavan syntyminen on kriittinen vaihe tyhjiöraon muuttuessa eristeestä johteeksi. Tämän prosessin ymmärtäminen on välttämätöntä koko tyhjiöläpilyönnin käsittämiseksi ja tyhjiöeristeiden optimoimiseksi. Nykyiset teoriat johtavan kanavan muodostuksesta ovat enimmäkseen yhtä mieltä siitä, että kanava alkaa rakentua katodilla syntyvä hehkun ja plasman vaikutuksesta, kun taas anodilla syntyvän hehkun rooli on kiistanalainen. Tässä väitöskirjassa hyödynnettiin kokeellisia menetelmiä, kuten sähköisiä mittauksia, suurnopeuskuvantamista, spektrianalyysiä, mikroskooppista morfoligia-analyysiä ja energiaspektrin analysointia, joilla kerättiin sähköiset signaalit, optisen säteilyn signaalit ja elektrodien pinnan muodot sekä koostumus läpilyöntien aikana. Työssä esitellään simulaatiomalli läpilyöntiprosessille perustuen PIC-MCC-metodiin, sekä selvennetään katodin ja anodin roolia johtavan kanavan synnyssä riittävyyden ja välttämättömyyden periaatteen mukaisesti, paljastaen johtavan kanavan syntymekanismin. Työssä osoitettiin, että katodihehkun ja -plasman tuottaminen on välttämätön ehto läpilyönnin alkamiselle. Anodihehku edellyttää atomeja sekä katodilta että anodilta. Katodin kontribuutio johtuu ionien heijastumisesta laajenevassa katodiplasmassa anodin pinnalla, mikä kertoo katodiplasman laajenemisen tärkeydestä johtavan kanavan luomisessa. Anodin atomit irtautuvat pinnalta ja vaikuttavat anodiplasmaan lähinnä sputteroituessaan anodipinnalta katodi-ionisuihkun ansiosta, eivätkä niinkään katodielektronisuihkun anodipintaa lämmittävän vaikutuksen johdosta. Sekä anodihehkun että johtavan kanavan muodostuminen vaikuttavat katodiplasman laajenemisen, mutta silti anodihehkun olemassaolo tai laajenenkinen ei ole välttämätöntä johtavan kanavan muodostumiselle. Lopulta, työssä esitettiin että välttämätön ja riittävä ehto tyhjiöläpilyönnin aiheuttavan johtavan kanavan muodostumiselle on katodiplasman synty ja laajeneminen, mikä todennettiin myös simuloiduilla visuaalisilla tyhjiöläpilyöntiprosessin demonstraatioilla. Tämän väitöskirjan johtopäätökset auttavat johtavan kanavan synnyn teorian perusteiden ymmärryksessä sekä tyhjiöön perustuvien eristeiden suunnittelussa ja optimoinnissa

    Similar works