Approximation of Gaussian curvature by the angular defect: an error analysis

Abstract

It is common practice in science and engineering to approximate smooth surfaces and their geometric properties by using triangle meshes with vertices on the surface. Here, we study the approximation of the Gaussian curvature through the Gauss–Bonnet scheme. In this scheme, the Gaussian curvature at a vertex on the surface is approximated by the quotient of the angular defect and the area of the Voronoi region. The Voronoi region is the subset of the mesh that contains all points that are closer to the vertex than to any other vertex. Numerical error analyses suggest that the Gauss–Bonnet scheme always converges with quadratic convergence speed. However, the general validity of this conclusion remains uncertain. We perform an analytical error analysis on the Gauss–Bonnet scheme. Under certain conditions on the mesh, we derive the convergence speed of the Gauss–Bonnet scheme as a function of the maximal distance between the vertices. We show that the conditions are sufficient and necessary for a linear convergence speed. For the special case of locally spherical surfaces, we find a better convergence speed under weaker conditions. Furthermore, our analysis shows that the Gauss–Bonnet scheme, while generally efficient and effective, can give erroneous results in some specific cases

    Similar works