CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Modeling of the plasma jet of a stationary plasma thruster
Authors
J. Bareilles
J. P. Boeuf
Iain D. Boyd
Laurent Garrigues
Publication date
15 June 2002
Publisher
'AIP Publishing'
Doi
Cite
Abstract
We have developed a two-dimensional hybrid fluid – particle-in-cell Monte Carlo collisions (PIC- MCC) model to study the plume of a stationary plasma thruster. The model is based on a fluid description of the electrons (the electron density follows a Boltzmann distribution) and a particle description of the ion and neutral transport. Collisions between heavy species are taken into account with a Monte Carlo method. The electric field is obtained from Poisson's equation or from the quasineutrality assumption. We first show that the results from the PIC-MCC model are close to the results of a more time-consuming direct simulation Monte Carlo approach. We then compare the model predictions of the plume density and ion energy distribution with experimental measurements. Finally, we present a brief discussion on the assumptions of the model and on its ability to give reliable predictions on important issues such as the flux of ions backscattered to the satellite. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70320/2/JAPIAU-91-12-9521-1.pd
Similar works
Full text
Available Versions
Deep Blue Documents
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:deepblue.lib.umich.edu:202...
Last time updated on 25/05/2012
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 21/04/2021