Suppression of Spontaneous Defect Formation in Inhomogeneous Bose Gases

Abstract

In phase transition dynamics involving symmetry breaking, topological defects can be spontaneously created but it is suppressed in a spatially inhomogeneous system due to the spreading of the ordered phase information. We demonstrate the defect suppression effect in a trapped atomic Bose gas which is quenched into a superfluid phase. The spatial distribution of created defects is measured for various quench times and it is shown that for slower quenches, the spontaneous defect production is relatively more suppressed in the sample's outer region with higher atomic density gradient. The power-law scaling of the local defect density with the quench time is enhanced in the outer region, which is consistent with the Kibble-Zurek mechanism including the causality effect due to the spatial inhomogeneity of the system. This work opens an avenue in the study of nonequilibrium phase transition dynamics using the defect position information.Comment: 6 pages, 4 figure

    Similar works