PM-FSM: Policies Modulating Finite State Machine for Robust Quadrupedal Locomotion

Abstract

Deep reinforcement learning (deep RL) has emerged as an effective tool for developing controllers for legged robots. However, vanilla deep RL often requires a tremendous amount of training samples and is not feasible for achieving robust behaviors. Instead, researchers have investigated a novel policy architecture by incorporating human experts' knowledge, such as Policies Modulating Trajectory Generators (PMTG). This architecture builds a recurrent control loop by combining a parametric trajectory generator (TG) and a feedback policy network to achieve more robust behaviors. To take advantage of human experts' knowledge but eliminate time-consuming interactive teaching, researchers have investigated a novel architecture, Policies Modulating Trajectory Generators (PMTG), which builds a recurrent control loop by combining a parametric trajectory generator (TG) and a feedback policy network to achieve more robust behaviors using intuitive prior knowledge. In this work, we propose Policies Modulating Finite State Machine (PM-FSM) by replacing TGs with contact-aware finite state machines (FSM), which offer more flexible control of each leg. Compared with the TGs, FSMs offer high-level management on each leg motion generator and enable a flexible state arrangement, which makes the learned behavior less vulnerable to unseen perturbations or challenging terrains. This invention offers an explicit notion of contact events to the policy to negotiate unexpected perturbations. We demonstrated that the proposed architecture could achieve more robust behaviors in various scenarios, such as challenging terrains or external perturbations, on both simulated and real robots. The supplemental video can be found at: https://youtu.be/78cboMqTkJQ

    Similar works

    Full text

    thumbnail-image

    Available Versions