Low-redundancy codes for correcting multiple short-duplication and edit errors

Abstract

Due to its higher data density, longevity, energy efficiency, and ease of generating copies, DNA is considered a promising storage technology for satisfying future needs. However, a diverse set of errors including deletions, insertions, duplications, and substitutions may arise in DNA at different stages of data storage and retrieval. The current paper constructs error-correcting codes for simultaneously correcting short (tandem) duplications and at most pp edits, where a short duplication generates a copy of a substring with length 3\leq 3 and inserts the copy following the original substring, and an edit is a substitution, deletion, or insertion. Compared to the state-of-the-art codes for duplications only, the proposed codes correct up to pp edits (in addition to duplications) at the additional cost of roughly 8p(logqn)(1+o(1))8p(\log_q n)(1+o(1)) symbols of redundancy, thus achieving the same asymptotic rate, where q4q\ge 4 is the alphabet size and pp is a constant. Furthermore, the time complexities of both the encoding and decoding processes are polynomial when pp is a constant with respect to the code length.Comment: 21 pages. The paper has been submitted to IEEE Transaction on Information Theory. Furthermore, the paper was presented in part at the ISIT2021 and ISIT202

    Similar works

    Full text

    thumbnail-image

    Available Versions