Undoped Strained Ge Quantum Well with Ultrahigh Mobility Grown by Reduce Pressure Chemical Vapor Deposition

Abstract

We fabricate an undoped Ge quantum well under 30 nm Ge0.8Si0.2 shallow barrier with reverse grading technology. The under barrier is deposited by Ge0.8Si0.2 followed by Ge0.9Si0.1 so that the variation of Ge content forms a sharp interface which can suppress the threading dislocation density penetrating into undoped Ge quantum well. And the Ge0.8Si0.2 barrier introduces enough in-plane parallel strain -0.41% in the Ge quantum well. The heterostructure field-effect transistors with a shallow buried channel get a high two-dimensional hole gas (2DHG) mobility over 2E6 cm2/Vs at a low percolation density of 2.51 E-11 cm2. We also discover a tunable fractional quantum Hall effect at high densities and high magnetic fields. This approach defines strained germanium as providing the material basis for tuning the spin-orbit coupling strength for fast and coherent quantum computation.Comment: 11 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions